# Spring 2005                             Lycoming College                                       Dr. Mahler

Please note that almost all of the ‘discussion questions’ are useful (i.e. the first several exercises for each chapter);

# Chapter 24, Sections 24.1, 2, 3, 4, 5, and 6.

Kinetic Theory of ideal gases; Molecular motion in gases; Various speeds (mean, rms, etc.); Mean free path, collision flux and collision frequency; Effusion and Graham’s Law; Flux and the three transport properties of ideal gases – diffusion, thermal conductivity, viscosity (and their coefficients and units); Molecular motion and viscosity in liquids; Conductance and (molar) conductivity, limiting molar conductivity, strong and weak electrolytes; Kohlrausch’s Law, law of independent migration of ions, degree of ionization, α, or deprotonation, and Ostwald’s Law.

Chapter 24: Exercises 5, 8, 9 (mean speed, mean free path, collision frequency), 11 (collision flux), 12 (effusion), 14 (thermal conductivity), 16, 17 (effusion), 28 (limiting molar conductivity).

Chapter 25, all sections (all, 1-8, 8b new)

Kinetics - some lab techniques for measuring it (real time, flow, and stopped flow methods, flash photolysis, quenching, isolation and initial rates methods); rate, stoichiometric number and rate of formation/consumption; rate laws, rate constant (and units), order (overall and of individual species, indefinite order); differential and integrated rate laws (0th, 1st, 2nd order); half-lives and k; Reactions approaching equilibrium - relaxation and temperature jump method; Arrhenius equation and parameters (activation energy and frequency factor), temperature dependence of rate;. Reaction Mechanisms; Elementary reactions – molecularity; observed vs. predicted (theoretical) rate laws; Consecutive elementary reactions; Three assumptions used to determine rate laws from mechanisms: rate determining step, steady state approximation, pre-equilibrium (plus uses, conditions of each); Kinetic isotope effect (primary and secondary) and causes; Unimolecular reactions and the Lindemann-Hinshelwood mechanism, assumptions needed to make it first and second order;* Activation energy of a composite reaction – positive and negative activation energies.

Chapter 25: Exercises 6, 7, 8 (rates, rate laws, rate constants), 9, 10 (orders of reaction), 11 (1st order), 12 (2nd order), 14 (skip – too involved), 15 (3rd order), 16 (Arrhenius parameters), Problems 1 (experiment to rate law), 12, 18 (mechanisms).

The practice problems are also useful here.

# Chapter 26, Sections 1, 2, 3, 4, 5, 6, 7, 11, 12.

Use of the three assumptions to determine rate laws from mechanisms (rate determining step, steady state approximation, pre-equilibrium); Chain reactions; chain carriers; steps in a chain mechanism initiation, propagation, retardation, inhibition, termination); rate laws for chain mechanisms; explosions (thermal and chain-branching); explosion limits in H2 + O2 à H2O; Polymerization kinetics; Stepwise and Chain polymerization and mechanisms; kinetic chain length; Homogenous catalysis and Enzyme kinetics, Michaelis-Menten mechanism, maximum velocity and turnover number; Inhibition (three types); Autocatalysis (brief); Photochemical processes and mechanisms; Quantum yield (primary and overall); Photochemical rate laws; Photosensitization; brief quenching.

# Chapter 26: Exercises 5, 6, 8, 9 (all solving mechanisms), 10 (Michaelis Menten), 11, 12 (photochemistry), Prob. 6, 12 (more mechanisms).

Chapter 27, Section 1

Molecular reaction dynamics;  Collision theory and using collision frequency to get collision density; Limitations on collision theory - steric requirements and activation energy; steric factor p and harpoon theory.

Chapter 27: Exercises 4, 5, 7 (all collision theory), (15, 17 – not yet covered);