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Mathematical Autobiography 

 Mathematical education has proven to be exciting, tedious, and rewarding, and it is the 

leading contender in becoming my future occupation. Because I am a mathematics major 

certifying in secondary education, I relate my experiences of mathematics closely to the 

teachers who taught me everything from addition to triple integration. I developed a love and 

appreciation for mathematics due to the passion with which many of my teachers taught it. The 

first time the excitement of mathematics grasped me was the second grade. The feeling has yet 

to leave. 

 In second grade, my teacher, Mrs. Allison, taught the basics of math including a way to 

learn multiplication with the use of plastic cubes you link together. I enjoyed playing with blocks, 

and working with cubes was almost the same thing. To me, “math time” sounded more like 

“block time,” and I was hooked. In third grade, I was placed in the gifted program. I was in the 

program for the rest of elementary school during which I learned a lot of algebra. My teacher, 

Mrs. Bauman, told my parents I had a natural mathematical ability.  

 Everything ran smoothly through middle school. Sixth grade’s basic algebra, seventh 

grade’s geometry, eighth grade’s algebra II—the concepts were all interesting yet simple. My 

freshmen year of high school proved to be more difficult. I was intimidated by taking a math 

course with upperclassmen. Mr. Gilmore, the functions, statistics, and trigonometry teacher, 

did not help. He was a large man who believed in teaching students to learn material on their 
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own. He gave little guidance, explaining that if there was ever a question, the answer could be 

found by using the book. His exams were difficult and always included one nearly impossible 

problem that had nothing to do with what we had learned. Mr. Gilmore, who was my transition 

to upper-level mathematics courses in high school, was giving me a reason not to care for the 

subject. Luckily, Mr. Kramer, my tenth grade trigonometry teacher, was able to make 

mathematics enjoyable again. He was a soft-spoken, funny, friendly man who created a relaxed 

and amusing atmosphere in which to do trigonometry. In his class SOH-CAH-TOA was an Indian 

chant used to help everyone remember how to calculate sine, cosine, and tangent. I had Mr. 

Kramer my junior year for calculus as well. With Mr. Kramer’s guidance, I conquered simple 

derivatives and summation. By the end of my junior year, I knew I was destined for a future in 

mathematics; I just wasn’t sure what. 

 As a senior, I took Advanced Placement (AP) calculus. It was the most exciting course I 

had ever taken in high school. The work was challenging, time consuming, and yet invigorating. 

Mrs. K. Miller, my teacher, was spectacular. She had a dedication to her students I had never 

experienced before. Due to my passion for calculus and her aptitude for teaching, I received a 5 

on the AP calculus exam. Mrs. K. Miller also inspired me to become a teacher. That led me to 

Lycoming College and the academic path I am pursuing. 

 Now in my sophomore year at college, I’ve learned much about derivatives, integration, 

series, and other calculus related topics. In the fall of 2006, I took calculus II. My first 

mathematics professor at Lycoming College, Dr. Yin, taught the course and made my love for 

calculus run deeper. In the fall of 2007, I took calculus III with Dr. Sprechini. These two courses 

confirmed my desire to become not only a teacher, but a calculus teacher.  
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 I’ve always enjoyed mathematics and plan on doing so for the rest of my life. After I 

graduate, I’d like to teach students the joy of mathematics as well. Perhaps, years from now, 

some student will include my name in a paper such as this, which would be quite an honor. 

 

Mathematician Biography: Rene Descartes 

 Rene Descartes was not solely a mathematician. He was, above all else, a philosopher 

who was quite accomplished in mathematical techniques involving algebra and geometry. He 

had not been exposed to mathematics until his last two years of school at the Jesuit college of 

Henri IV in La Flèche. Though he showed great aptitude for mathematics, he continued his 

education at Poitiers, earning his baccalaureate and licentiate degrees in Law (“Rene 

Descartes”). Despite a lack of formal training in mathematics, he is known now as the father of 

analytical geometry due to his discoveries in the fields of geometry and algebra and his written 

work Geometry (Moorman 299).  

 It seemed unlikely that Descartes, born March 31, 1596 in the town of La Haye in the 

south of France, would come upon excellence in the field of mathematics. His grandfather and 

great-grandfather had been doctors. His father was a lawyer and councilor in Parliament 

(Sorrell 6). From his degrees in law and the conception he held while attending the Jesuit school 

that mathematics is “good only for clever tricks and mean trades,” one can speculate that he 

intended to follow in his father’s footsteps (Jones 47). These ideas seem to have changed while 

Descartes was in the army of Prince Maurice of Orange.  While touring with the army in Breda, 

Descartes met Isaac Beeckman, who agreed to translate a Dutch placard if Descartes would 

then answer it. Unknown to Descartes, the placard was a challenge to solve a geometrical 
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problem. Within a few hours, Descartes was able to work out the problem. Following this 

encounter, Descartes continued his practice of mathematics during his participation in the 

Thirty Years War. On the night of November 10, 1619, while campaigning on the Danube, 

Descartes experienced dreams that he claimed bore his first ideas for his new philosophy and 

analytical geometry. Shortly following this epiphany, in 1621, Descartes resigned his 

commission in the army to travel and study pure mathematics (Ball). 

 His study of pure mathematics continued for five years. In 1628, Cardinal de Berulle 

commissioned Descartes to dedicate his life to the “examination of truth” (Ball). Descartes 

spent the following twenty years studying philosophy and mathematics. During this time he 

developed a written work entitled Regulae, in which he believed to have discovered a method 

for solving any problem concerning number and figure. To compliment this, he developed a 

procedure that could transcribe any scientific problem to either number or figure, thus making 

it solvable by his method (Sorrell 19). In this case, Descartes’ ambitions got the best of him, for 

his method and procedure were not adequate to fulfill their claim. His most notable work to 

come from this time period would be Geometry in 1637 (“Rene Descartes”). 

 In Geometry, Descartes explores the theory of analytical geometry in a collection of 

three books. The first discusses a problem proposed by the Greek Pappus and Descartes’ work 

with it, which led to his invention of analytical geometry, the study of geometry through the 

application of principles of algebra. The second book focuses on Descartes’ studies of 

geometrical and mechanical curves. The third book ends the collection by focusing on an 

analysis of algebra (Ball). 
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 The problem proposed by Pappus, included in the first book of Geometry, focuses on 

finding the locus of a point so the product of the perpendiculars on m given straight lines will 

maintain a constant ratio to the product of the perpendiculars on n other given straight lines. If 

m=n=2, Pappus explained, then the locus is a conic. Descartes was able to show the curve was 

represented by an equation of the second degree, which is a conic, but was unable to prove this 

by pure geometry (Ball).  

 In the second book of Geometry, Descartes defines geometrical curves to be “those 

which can be generated by the intersection of two lines each moving parallel to one coordinate 

axis with ‘commensurable’ velocities” (qtd. in Ball). In other words, dy/dx is an algebraic 

function. Descartes defined a curve to be mechanical “when the ratio of the velocities of these 

lines is ‘incommensurable’,” which means that dy/dx is a transcendental function (qtd. in Ball). 

 In the third portion of Geometry, which concerns the analysis of algebra, Descartes 

introduced rational devices for clarity in mathematics: He invented the use of x, y, and z to 

represent unknown values and a, b, and c to represent known values in equations (Sorrell 19). 

This writing also depicts Descartes as the first to understand advantages of moving all terms of 

an equation to one side. He also realized the meaning of negative quantities and made use of 

the rule for finding the limit to the number of positive and negative roots of an algebraic 

equation. He introduced the method of indeterminate coefficients for the solutions of 

equations in this portion of text as well (Ball).  

 Adding to clarity in mathematics, Descartes pioneered standard notations for cubes and 

higher powers and their corresponding roots. Descartes showed how lines in geometry could 

represent all quantities with expressible relations and how lines and curves were expressible 
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through algebraic notation (Sorrell 19). In order to work with new geometric curves, Descartes 

invented a machine that could draw curves previously thought indescribable strictly by 

geometric techniques, which he labeled as mechanical curves. He then displayed how these 

mechanic curves could be assimilated into geometric ones and how these lines and figures 

could be represented by equations (Sorrell 43). 

 Specifically, Descartes’ greatest discovery was that a point in a plane could be 

determined given distances of x and y from two fixed lines of a right angle in the plan and that 

f(x,y)=0 was indeterminate and could be satisfied by infinite values of x and y. Then these points, 

x and y, determined the coordinates of multiple points that form a curve, which the function 

f(x,y)=0 expresses as a geometrical property true of the curve at every point on it. While 

Descartes’ interests remained on plane curves, it follows that every point in space could 

similarly be determined by use of three coordinates. Descartes also improved upon what earlier 

writers had hinted at by concluding that two or more curves can be referred to one and the 

same system of coordinates. He went further still, stating that the points where two curves 

intersect can be determined by finding the roots common to their two equations (Ball). 

 Being both a great mathematician and thinker, it is only natural that Descartes would 

parlay his powers of mathematics into other sciences. He made great strides in the field of 

optics, publishing a work entitled Dioptrics. By use of his geometric knowledge of curves he 

studied the formation of rainbows and refraction of light, optimal curves for telescope and 

microscope lenses, and the makeup of the eye (Sorrell 38-40). Descartes also developed a 

universal mathematics he called “mathesis,” which he stated, “explains all the points that can 

be raised concerning order and measure irrespective of the subject matter” (Sorrell 14). He 
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created a theory of vortices, which was the first attempt to give a complete mathematical and 

mechanical explanation of the universe as if it were a machine (Moorman 305). Descartes also 

deduced a theory of gravity concerning the planets and their satellites’ evolutions. It was based 

on the vortex theory: a whirlpool was centered on the sun, around which planets swept. This 

same theory was applied to the moon to explain its revolutions about the earth. There were 

flaws in his theory, due to both physics that didn’t consider resistance or mass in calculations, 

and the fact that he rarely tested his ideas experimentally (Sorrell 91). Although his ideas of 

planetary motion were innovative, he hesitated to publish them for fear he would offend the 

Inquisition (Sorrell 35). 

 Though Rene Descartes made large contributions to the field of mathematics, the 

greater portion of his work falls into the field of philosophy. Unlike most philosophers, though, 

he took a mathematician’s approach to thought, considering analysis to be more important a 

technique than synthesis (Moorman 299). His mathematical prowess effectively made his 

philosophy as powerful as it was and continues to be. He composed three important texts of 

philosophy: Discourse on the Method of Rightly Conducting the Reason and Seeking Truth in the 

Sciences, Meditations on First Philosophy, and Principles of Philosophy (“Rene Descartes”). 

 Beyond all his accomplishments lies what Descartes describes as his greatest sorrow: 

the death of his 5-year-old illegitimate daughter Francine in 1640 (Sorrell 56). Only 10 years 

later, at age 54, Descartes himself would pass away. He was a notoriously weak individual, 

requiring that he remain in bed until he felt able to rise. This most likely contributed to his 

contraction of pneumonia while tutoring the Queen of Switzerland, who required her learning 

to begin at five in the morning (“Rene Descartes”). Having little family or other cares, Descartes 
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used the majority of his time to dream up genius ideas of mathematics and other sciences. 

Though he has been dead for over three centuries, the popularity of his work will not allow his 

body to receive the rest it needs. Disputes continue over where his final burial ground should 

be. In fact, his skull is on display at the Musee de l’Homme in Paris (Sebba 225). 

 

Works Cited 

Ball, W.W. Rouse. A Short Account of the History of Mathematics. London: Macmillan, 1908. 

Web. 4 Feb. 2008. 

Jones, Matthew L. “Descartes’ Geometry as Spiritual Exercise.” Critical Inquiry 28.1 (2001): 47. 

Jstor.  Web. 5 Feb. 2008.  

Moorman, R. H. “The Influence of Mathematics on the Philosophy of Descartes.” National 

Mathematics Magazine 17.7 (1943): 299-305. Jstor. Web. 5 Feb. 2008.  

“Rene Descartes.” ReneDescartes.com. 2 Dec. 2002. Web. 4 Feb. 2008.   

Sebba, Gregor. “Some Open Problems in Descartes Research.” Modern Language Notes 75.3 

(1960): 225. Jstor. Web. Feb. 5 2008.  

Sorrell, Tom. Descartes: A Very Short Introduction. New York: Oxford University Press, 2000. 

Print. 

 

 

 

 

 

 

 

 

 



 
9 

Theorems 

 

For the ten theorems I explore, a few definitions should be understood for application. They are 

as follows: 

 

Definition of Subset: Let A and B be sets. We say A is a subset of B and write A ⊆ B iff 

(∀x)( x ∈ A ⇒ x ∈ B ). 

 

Definition of Intersection: Let A and B be sets. The intersection of A and B, denoted A∩B, 

is the set A∩B = {x| x ∈ A ∧ x ∈ B}. 

 

Definition of Union: Let A and B be sets. The union of A and B, denoted A∪B, is the set 

A∪B = {x| x ∈ A ∨ x ∈ B}. 

 

Definition of Disjoint: Let A and B be sets. We say A and B are disjoint iff A∩B = Ø 

 

Definition of Power set on set A: Let A be a set. The power set of A, denoted P(A), whose 

elements are the subsets of A, is defined as P(A)={B|B⊆A}. 

 

Definition of Inverse: Let R be a relation. Then the inverse of R, denoted R-1, is the set R-

1 = {(y,x)| (x,y) ∈ R}. 

 

Definition of Symmetry: Let R be a relation. Then R is symmetric if (∀x,y)( xRy ⇒ yRx). 

 

Definition of the Composite of R and S: Let R and S be relations from sets A to B and B to 

C respectively. The composite of R and S, denoted S°R, is the relation S°R = 

{(x,z)|($y)(xRy  ∧  ySz)}. 

 

Inherent and explicit use of these definitions will be explored in a variety of theorems mainly 

involving set theory.  

 

1) Theorem: For any sets A,B, A∩B⊆ A. 

Proof: 

Let A, B be arbitrary sets. Let x be arbitrary. Let x∈A∩B. By the definition of 

intersection  x∈A and x∈B. Therefore, x∈A. Since x was arbitrary, A∩B⊆ A by the 

definition of subset. Therefore, for any sets A,B, A∩B⊆ A, QED. 

 

Explicit use of the definitions of intersection and subset enable the theorem A∩B⊆ A to be 

proven. From this first theorem, one can see how these definitions will be used with one other. 

The second theorem in this series displays how understanding the definitions of subset and 

intersection can be used to prove that subsets of two disjoint sets are also disjoint. 
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2) Theorem: For any sets A, B, C, D, if C⊆A and D⊆B and A and B are disjoint, then C and D 

are disjoint. 

Proof (by contraposition): 

Let A, B, C, D be arbitrary sets. Suppose C⊆A and D⊆B and C∩D≠Ø. Let x∈C∩D 

be arbitrary. Then x∈C and x∈D. Since C⊆A and D⊆B, x∈A and x∈B by the 

definition of subset. Therefore x∈A∩B. Since x was arbitrary, A∩B≠Ø. By 

contraposition, it follows that, for any sets A, B, C, D, if C⊆A and D⊆B and A and 

B are disjoint, then C and D are disjoint, QED. 

 

So far the definitions of subset, intersection, and disjoint have each been applied in the first 

two proofs. Now consider their use to prove an if and only if condition.  We can apply previous 

experiences to theorem three; the work done proving A∩B⊆ A in theorem one will be useful. 

 

3) Theorem: For any sets A, B, A⊆B ⇔ A∩B=A 

Proof: 

<First we must prove A⊆B ⇒ A∩B=A.> Let A, B be arbitrary sets. Suppose A⊆B. 

Let   x∈A be arbitrary. From hypothesis, A⊆B.  Since x∈A, then x∈B by the 

definition of subset. Hence, x∈A implies x∈A and x∈B, so x∈A∩B. Because x∈A 

and x∈A∩B, then A∩B⊆A. Thus, A∩B=A. 

 

<Next we must prove A∩B=A ⇒ A⊆B.> Suppose A∩B=A. Let x∈A∩B. Then x∈A 

and x∈B by the definition of intersection. Thus x∈B and x∈A, which is equivalent 

to x∈B∩A. From a previous theorem A∩B⊆A, so obviously B∩A⊆B. Therefore 

B∩A= A∩B. It follows that A∩B⊆B. By hypothesis, A∩B=A, so A⊆B, and if A⊆B 

then A∩B=A and if A∩B=A then A⊆B. By that reason, for any sets A,B A⊆B ⇔ 

A∩B=A, QED. 

 

Another example of a bi-conditional proof follows, but rather than assert that A⊆B ⇔ A∩B=A, 

it proves how A⊆B ⇔ A∪B =B. This is a slight difference that will explore how the union of two 

sets will change our proof. Though it is not explored within these 10 proofs, it is logical to 

reason by use of proofs number 3 and 4 that A∩B=A⇔ A∪B =B. 

 

4) Theorem: For any sets A, B, A⊆B ⇔ A∪B =B. 

Proof: 

<First show that A∪B = B ⇒ A⊆B.> Let A,B be arbitrary sets. Suppose A∪B = B. 

Let x be arbitrary. Suppose x∈A. Then certainly x∈A or x∈B. It follows that x∈A∪B. 

Since A∪B = B, x∈B. Since x was arbitrary, A⊆B. Therefore A∪B = B ⇒ A⊆B.  

<Next show that A⊆B ⇒ A∪B =B.> Suppose A⊆B. Let x be arbitrary. Suppose 

x∈A∪B. By the definition of union, x∈A or x∈B. If x∈B, we’re finished. If x∈A, 

since A⊆B, x∈B. In either case, x∈B. Therefore, since x was arbitrary, A∪B ⊆B. 

From a previous theorem, B⊆A∪B. Thus, A⊆B ⇒ A∪B =B. Since A, B were 

arbitrary, A⊆B ⇔ A∪B =B for all sets A,B, QED. 
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Intersection was used in the proof of A⊆B ⇔ A∩B=A. When the assumption is made that a set 

is the subset of the intersection of two sets, it can be seen how that set must be a subset of 

each of the two intersecting sets both by transitivity and the definition of intersection. The 

proof of this intuitive knowledge follows.  

 

5) Theorem:  C⊆A∩B ⇔ C⊆A ∧ C⊆B 

Proof: 

<First prove C⊆A∩B ⇒ C⊆A ∧ C⊆B.> Let A, B, C be arbitrary sets. Suppose 

C⊆A∩B. Let x∈C be arbitrary. Then, by definition of subset, x∈A∩B. 

Consequently, C⊆A ∧ C⊆B.  

 

<Next prove C⊆A ∧ C⊆B ⇒ C⊆A∩B.> Suppose C⊆A ∧ C⊆B. Let x∈C be arbitrary. 

Then, by the definition of subset, x∈A and x∈B. Since x was arbitrary, x∈A∩B. 

Hence, C⊆A ∧ C⊆B. Thus, for any sets A, B, C, C⊆A∩B ⇔ C⊆A ∧ C⊆B, QED. 

 

Since our definitions can be manipulated by applying the use of an arbitrary x element, one may 

explore how the application of an arbitrary x element will look in a proof by cases. 

 

6) Theorem: For any sets A,B,C, if A⊆C and B⊆C, then A∪B⊆C 

Proof: 

Let A,B,C be sets. Suppose A⊆C and B⊆C. Let x∈A∪B be arbitrary. Then x∈A or 

x∈B by the definition of Union.        

   

Case 1: If x∈A, then by the definition of subset, x∈C.    

Case 2: If x∈B, then by the definition of subset, x∈C. 

 

Therefore, since x∈C in both cases, and since x was arbitrary, A∪B⊆C by the 

definition of subset. Thus, for any sets A,B,C, if A⊆C and B⊆C, then A∪B⊆C, QED. 

 

Up to this point, extensive work has been done with subsets. In the proof of theorem 7, we will 

continue working with subsets in relation to the power set. 

 

7) Theorem: For sets A, and B, A⊆B⇔P(A) ⊆ P(B). 

Proof: 

Let A and B be sets. Let P(A) and P(B) be the power sets of A and B respectively. 

Suppose A⊆B and suppose x∈P(A). <Must show x∈P(B).> x∈P(A) implies that 

x⊆A. Since A⊆B, then x⊆B. x⊆B implies that x∈P(B). Accordingly, x∈P(A) implies 

x∈P(B). Thus P(A) ⊆P(B), QED. 

 

Union is applied to symmetric and inverse relations. When the definition of union and 

symmetry are known, it is intuitively obvious that the union of the relation and its inverse will 

be symmetric. 
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8) Theorem: Let R be a relation. Then R U R
-1

 is symmetric. 

Proof:  

Let R be a relation on set A. Suppose (x,y)∈ R U R
-1

. Then (x,y) ∈ R or (x,y)∈ R
-1

. If     

(x,y)∈R, then (y,x)∈ R-1. Similarly, if (x,y)∈ R-1, then (y,x)∈ R. In either case, (y,x)∈ 

R U R
-1

. Thus RUR
-1

 is symmetric, QED. 

 

Since inverse relations and symmetry have been considered, it will be easier to apply these 

concepts in a more involved proof.  The following bi-conditional theorem calls for further use of 

inverse relations and symmetry, as well as the use of subset.  

 

9) Theorem: R is symmetric ⇔ R
-1
⊆R. 

Proof:  

<First we show R is symmetric ⇒ R
-1
⊆R.> Let A be any set and R be a relation on 

A. Suppose R is symmetric. Let (x,y) ∈ R
-1

 be arbitrary. By the definition of inverse, 

(y,x) ∈ R. Since R is symmetric, by hypothesis, (x,y) ∈ R. Thus, since (x,y) was 

arbitrary,     R
-1
⊆R.  

 

<Next show R-1
⊆R ⇒ R is symmetric.> Suppose R-1

⊆R. Let (x,y) ∈ R be arbitrary. 

By the definition of inverse, (y,x) ∈ R
-1

. By the definition of symmetry, (y,x) ∈ R
-

1
⊆R. Since (x,y) was arbitrary, R is symmetric. Since A and R were arbitrary, 

∀R∈A, R is symmetric ⇔ R
-1
⊆R, QED. 

 

Now a better understanding of symmetry and inverse relations has been acquired. Consider the 

use of composition with inverse. The following theorem manipulates said concepts in a 

repetitious fashion to determine the proof. 

 

10) Theorem: (S°R)
-1

 = R
-1

°S
-1

. 

Proof:  

<First show (S°R)
-1

 ⊆ R
-1

°S
-1

.> Let S and R be arbitrary relations. Let (x,z) be an 

arbitrary element of (S°R)
-1

. By definition of inverse, (z,x) ∈ S°R. By definition of 

composition, $y such that (z,y) ∈ R and (y,x) ∈ S. By definition of inverse (y,z) ∈ R
-

1
 and (x,y) ∈ S

-1
. By definition of composition (x,z) ∈ R

-1
°S

-1
. Since (x,z) was 

arbitrary, (S°R)-1 ⊆ R-1
°S

-1.  

 

<Next show that R
-1

°S
-1

 ⊆ (S°R)
-1

.> Let (u,w) be an arbitrary element of R
-1

°S
-1

. By 

definition of composition, $v such that (u,v) ∈ S
-1

 and (v,w) ∈ R
-1

. By definition of 

inverse, (w,v) ∈ R and (v,w) ∈ S. By definition of composition, (w,u) ∈ (S°R). By 

definition of inverse, (u,w) (S°R)
-1

. Since (u,w) was arbitrary, R
-1

°S
-1

 ⊆ (S°R)
-1

. Since 

S and R were arbitrary, (S°R)
-1

 = R
-1

°S
-1

. Hence, (S°R)
-1

 = R
-1

°S
-1

, QED. 

 

The theorems of this paper explore only a few of the many possible combinations of the listed 

definitions in reference to sets and relations. Hopefully this short exposition has provided a 
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practical understanding of the investigated concepts through the proving of the supplied 

theorems.  
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