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Abstract 

Grooming is a quantitative behavior that is controlled by multiple genes and contributes to 

fitness in many animals including insects. Excessive grooming is demonstrated by animals that 

model human genetic intellectual disabilities, such as a loss of function mutation of the 

Drosophila ortholog of the human Fragile X Syndrome gene. Usually, manual scoring 

techniques are used for quantifying grooming and they rely on direct human observation of 

prerecorded videos of fly behavior. It is a time-consuming process and potentially subject to 

scorer bias. Many groups have developed automated analysis techniques to increase scoring 

throughput and consistency, but most of these approaches rely on very specific hardware and in-

house computational expertise that render them difficult to replicate in other laboratories. We 

have been developing a semi-automated method that relies on commercially available software 

EthoVisionXT® software (Noldus Information Technology) and standard laboratory hardware. 

In this study, our goal was to identify the optimal parameter settings of EthoVisionXT® to 

generate grooming scores most congruent with a manually-scored set of benchmark videos. Our 

results show that an initial activity setting of 16, a movement threshold of 0.05 cm/s and activity 

thresholds of 10% (0.10), 14% (0.14), and 15% (0.15) yield the best set of automated scores that 

are comparable to manual scores. We also identified an optimization conflict in the comparison 

of automated and manual scores on a fly-by-fly basis versus at the population level, with 

different settings providing conflicting best results. Future studies should focus on working 

within these recommended software parameters, first with the same benchmark population and 

then with different populations of flies to finalize a software setting for automatic quantification 

of spontaneous Drosophila grooming. 
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 Background 

 Many behaviors in animals are initiated in response to extrinsic stimuli and directed by 

internal neural states that control motor programs. Spontaneous innate behaviors that vary in a 

population and have fitness consequences are predicted to have genetic networks that contribute 

to variation in their expression (Mackay et al. 2009, McDiarmid and Rankin 2017). The interplay 

of underlying genetic variation and the expression of that variation through the nervous system 

has been incredibly difficult to parse out experimentally. The fruit fly Drosophila melanogaster 

provides a useful model system in which to address questions about the genetic underpinnings of 

complex behaviors, in part because of the well-characterized repertoire of behaviors (Sokolowski 

2001) and genetic tools that are available to interrogate the role of genetic variants in quantitative 

trait expression (MacKay et al. 2012; Aimon and Kadow 2020). Grooming is a particularly 

relevant innate behavior because of its near universal widespread expression in animals and 

diverse purposes that contribute to an animal’s fitness (Sachs 1988; Spruijt et al. 1992). 

Moreover, grooming variation in the fruit fly has been shown to be influenced by many different 

genes (Yanagawa et al. 2020) and neural networks (Seeds et al. 2014; Hampel et al. 2020). 

Interestingly, grooming is also a recurring exacerbated phenotype in different fly models of 

human neurodevelopmental disorders such as Fragile X syndrome (FXS) (Andrew et al. 2021). 

One recurring dilemma in studies that seek to study grooming and understand the neurogenetic 

mechanisms that contribute to variation in expression is the time-intensive process of quantifying 

grooming bouts. In this study, we seek to optimize the use of commercially available behavior 

video tracking software to increase the throughput of grooming behavior analysis.  

Drosophila has long been used as a genetic model system to study human 

neurodevelopmental disorders (Restifo 2005; Inlow and Restifo 2004). Recent work has shown 
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that grooming is often aberrantly expressed in neurodevelopmental mutants, specifically those 

that model human Fragile X syndrome (FXS) (Andrew et al. 2021). FXS is a human 

neurodevelopmental disorder that occurs due to a loss of function mutation of the Fragile X 

Mental Retardation 1 (FMR1) gene. It is notable in part because it was the first known example 

of a trinucleotide repeat disorder, which occurs due to the excessive repetition of three 

nucleotides CGG in or around a disease-causing gene (Garber et al. 2008). A complete mutation 

involves as many as 200 repeats of the CGG trinucleotide sequence leading to transcriptional 

inactivation of the Fragile X Mental Retardation protein (FMRP) (Garber et al. 2008). FMRP 

plays a key role in regulating protein interactions at neuronal synapses and abnormalities in 

FMRP affects synaptic plasticity. At the synapses, FMRP has been proposed to be a negative 

regulator of protein synthesis stimulated by group 1 metabotropic glutamate receptor (mGluR) 

activation (Bear et al. 2004). Thus, the absence of FMRP results in excessive glutamate receptor 

internalization in response to mGluR signaling (Nakamoto et al. 2007). The altered synaptic 

framework because of FMRP-RNA binding becomes the root cause of dendritic abnormalities, 

ultimately giving rise to FXS phenotypes. A key neurological feature of individuals with FXS is 

the presence of immature dendritic spines (reduced dendritic spine length and abnormal shapes) 

in regions of excitatory synapses, an abnormality that is similar to those associated with other 

forms of intellectual disability (Irwin et al. 2001; Kauffman et al. 2000). Nuanced understanding 

of the molecular pathology of intellectual disorders calls for appropriate model systems that can 

help us perform more extensive molecular and behavioral assays to understand intellectual 

disorders. The analysis of aberrant behaviors in model systems like flies is central to this 

approach.  
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 The fruit fly is an ideal model organism for studying genetic neurodevelopmental 

disorders due to the rich repertoire of behaviors it offers, the genetic tools to identify molecular 

pathways associated with disease (e.g. Coll-Tané et al. 2019), and the low-cost maintenance, 

propagation, and screening available for fly labs (Qiao et al. 2018; Pandey et al. 2011). Most 

Drosophila melanogaster genes are evolutionarily conserved with humans, making fly models 

ideal for understanding common human diseases and behavioral disorders (Huang et al. 2014; 

Inlow and Restifo 2004). The Drosophila melanogaster mental retardation 1 (dfmr1) gene is a 

homolog to the human FMR1 gene and exhibits high sequence similarity with all three human 

FXS genes Fmr1, FXR1, and FXR2 (Specchia et al. 2017). The dfmrp protein encoded by the 

dfmr1 gene has highly conserved domains similar to human FMRP (Specchia et al. 2017). Fruit 

flies that lack the dfmr1 gene, and hence lack dfmrp, are a genetic model for studying FXS 

(Dockendorff et al. 2002). Interestingly, they exhibit aberrant phenotypes relevant to FXS in the 

form of excessive grooming (Andrew et al. 2021). In addition, at the cellular level, dfrm1 

mutants also present defective neuronal architecture and synaptic function (Specchia et al. 2017; 

Michel et al. 2004). The excessive grooming exhibited by dfmr1 mutants may be analogous to 

the excessive repetitive behaviors associated with FXS and other human neurodevelopmental 

disorders (Andrew et al. 2021).  

 In addition to helping elucidate the behavioral consequences of genetic diseases, flies 

also present opportunities to study the underlying neurogenetics of typical spontaneous 

behaviors. The Drosophila melanogaster reference panel (DGRP) is a publicly available 

resource that was developed to aid in identifying specific genetic regions and single nucleotide 

polymorphisms (SNPs) responsible for contributing to quantitative traits. It comprises 205 fully 

sequenced inbred fly lines that have been derived from a single outbred population (Mackay et 
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al. 2012; Huang et al. 2014). The DGRP contains a representative sample of naturally 

segregating genetic variation and comprises an ultra-fine-grained recombination map suitable for 

localization of causal genetic variants for virtually any quantitative trait (Mackay et al. 2012). An 

advanced understanding of the Drosophila genetic network made possible with the DGRP would 

complement behavioral studies showing the external manifestation of mutations in the form of 

excessive grooming. We utilized videos of flies from the DGRP in our current study.  

 Grooming is an internally programmed behavior that can be spontaneous or stimulated 

and is used by fruit flies to clean their body parts (Szebenyi 1969; Phillis et al. 1993). Studies in 

the past have targeted specific brain regions to gain an experimental understanding of the neural 

circuits that control innate cleaning programs (Seeds et al. 2014). For example, expression of the 

temperature sensitive cation channel dTRPA1, which selectively activates neurons, in different 

groups of brain cells caused grooming behavior in the absence of dust (Hamada et al., 

2008; Pfeiffer et al., 2008; Jenett et al., 2012). Simultaneously, blocking cation channels in these 

same cells with UAS-shibire, which reduces neuronal activation, did not inhibit dust-induced 

grooming, suggesting that targeted neurons were sufficient but not necessary to drive respective 

cleaning movements (Seeds et al. 2014). Later studies have also focused on the localization of 

neural networks that control grooming and how intervening in the functional organization of the 

neural network produces changes in grooming patterns. A study by Hampel et al. showed that 

neurons are functionally connected to form a circuit that detects displacement of the antennae via 

mechanosensory neurons and then commands grooming through three different interneuron 

classes (Hampel et al. 2015). In all of these studies, one of the bottlenecks for studying the 

genetic and neural aspects responsible for spontaneous or sensory-responsive grooming was the 

quantification of grooming behaviors. 
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 Grooming behavior in fruit flies has typically been scored manually. In early studies, 

systems were used where an observer watched a fly groom and audibly called out symbols to 

distinguish the various types of grooming (Szebenyi 1969). These systems were later replaced by 

the post-production analysis of video recordings of flies behaving either spontaneously or 

prompted to groom by the application of dust (Seeds et al. 2014; Andrew et al. 2021). Video 

annotation software is also typically employed to aid in identifying and annotating grooming 

bouts. The program VCode is a video annotation software package that has been used in a wide 

range of studies to quantify animal behaviors. It has a wide range of advantages including the 

support of multi-video stream, support of wide range of behaviors and events, chronological 

viewing of events, multiple playback modes, and consolidation of all administrative features in a 

single window (Hagedorn et al. 2008; VCode https://social.cs.uiuc.edu/projects/vcode.html ). 

Andrew et al. used VCode to manually quantify fruit fly grooming in recorded videos of 

different neurodevelopmental mutants (2021). The downside of this manual scoring approach is 

that the process is time intensive and subject to scorer bias. In addition, these techniques require 

intensive training (Feldbauer 2020).  

 Automated analysis of grooming is a more efficient approach as it allows for more data 

collection in a shorter time interval. Some automated scoring techniques of quantifying 

grooming use machine learning techniques to make a computer perform a task by familiarizing it 

with an algorithm. A study by Qiao et al. developed a k Nearest Neighbor (kNN) algorithm that 

performs a fruit fly video image analysis of categorizing video frames into different behavioral 

categories after having been trained by a training dataset (2018). Every frame of an uploaded 

video was analyzed to see if it met the threshold value for the number of pixels to be binned into 

a certain behavior frame. If the threshold was not met, the background was updated, and if the 

https://social.cs.uiuc.edu/projects/vcode.html
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threshold was met, the background was subtracted (Qiao et al. 2018). The image of the fly’s 

body was split into the core (thorax and abdomen), centroid, and periphery (legs, head, and 

wings) (Qiao et al. 2018). The change in pixels of each frame was expected to exceed or be equal 

to the threshold value of change of 12 because at that number the accuracy (ratio of the correct 

grooming levels to the output levels) of the algorithm was equal to sensitivity of the algorithm 

(Qiao et al. 2018). The algorithm provided 90 to 95% accurate results, with 5% of cases where 

either the grooming bout was not identified or misidentified as locomotion (Qiao et al. 2018). A 

similar approach was used by Kain et al. to track grooming behavior and changes in gait in 

Drosophila (2013). First, there was a set of manual scores that were used for agreement between 

scorers through an interrater reliability test (with only 71% interrater reliability). The machine 

learning scores yielded though kNN were 66% accurate. In each of these cases, very specific and 

expensive recording equipment was required for their analysis, and the computational expertise 

required to implement their detection algorithms was extensive.  

This study aims to utilize a commercially available video tracking software package 

called EthoVision XT® (Noldus Information Technologies, Wageningen, the Netherlands) to 

accurately identify grooming behaviors in flies. This software is much more user-friendly than 

previously published automated behavioral analysis options, has a robust manufacturer support 

system, and is widely utilized in other animal model systems. The goal of this project it to 

determine the optimal settings of the software EthoVisionXT® to detect grooming behaviors. 

This would in turn enable an automated analysis approach to behavioral quantification that 

would allow for higher throughput and increased repeatability between experiments.   
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Materials and Methods 

Video recordings and fly behavior data collection 

Previous lab members Courtney Hannum and Zachary High created a video collection 

comprising 157 10-minute-long videos that captured spontaneous behavior in >750 fruit flies 

from 34 different DGRP lines. These videos were collected for a study that used manual scoring 

techniques (described for the current study below) to examine grooming (Hannum 2017). They 

defined grooming as any stroking of the head, antennae, proboscis, limbs, wings, or thorax using 

one or more limbs (Hannum 2017). Fly behavior was recorded 20-24 hours after eclosion (when 

a mature fruit fly emerges from its pupal case) to make sure that all animals were at comparable 

developmental ages. The animals were brought to the behavior room at least an hour before the 

recording time to allow them to acclimate to room conditions, which were a temperature of 25℃ 

and 70% humidity. For each video, six un-anaesthetized flies were aspirated in individual wells 

of a sterile polystyrene flat-bottomed 96 well plate. The plates were pre-filled with 200 µL 1.5% 

of agar to maintain a consistent substrate, provide humidity, and restrict fly movement vertically 

in the recording arena (Hannum 2017). Videos were recorded with a Canon Vixia HF R72 

camera. The camera was placed overhead of the wells and all recordings were performed in the 

dark under the light of a circular microscope LED desk light (Hannum 2017). Before every 

recording session, the name of the recorder, DGRP line and sex of the fly were noted and during 

the recording session patterns of behavior, such as excessive grooming, walking, standing were 

noted. At the end of the recordings, the flies were put in individual 0.5 mL microcentrifuge tubes 

and placed in a -20℃ freezer for subsequent genotyping. All videos in the current study were 

recorded in this manner during the summer of 2016. 
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Choosing representative data set for manual and automated scoring 

 The scoring results from the previous lab members were stored in an excel spreadsheet 

comprising the video number, fly line genotype, well in which the fly was aspirated, 

corresponding grooming bout length, grooming index, and number of grooming bouts. A 

grooming bout is defined as the time between the start and stop of an interval of uninterrupted 

grooming. Thus, each video can be broken down into numerous bouts of walking, standing, and 

grooming. Grooming index (GI) is the percentage of the total time the fly spends grooming (sum 

of all grooming bout lengths divided by length of video multiplied by hundred). For our project, 

we used a random number generator (www.random.org) to assign random numbers to each of the 

scored flies from this previous study. We chose the flies with the randomly-assigned numbers 1-

50, out of the total set of >700 previously scored animals, as our working set moving forward. 

This approach was employed to allow us to choose animals exhibiting a diverse array of 

grooming patterns and reduce any genotype bias to our analysis. We then entered all the 

information (grooming indices, mean length of bout, and number of grooming bouts) for this set 

of animals into a new excel spreadsheet that was then filled in with the corresponding 

information from the current user.  

Manual Scoring with VCode and Interrater Reliability Testing 

 From the working set of 50 flies, each corresponding video was loaded into the VCode 

video annotation software (Hagedorn et al. 2008). Each of the 6 wells in the video was assigned 

a specific key to indicate when grooming bouts occur. To score and quantify grooming, the user 

observed the video and pressed the designated key once the fly started grooming and pressed it 

again when the fly stops grooming, thereby demarcating a grooming bout in the video. This was 

repeated for every grooming bout in a given video for the extent of the 10-minute recording. The 
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space bar was used to pause the video, and the left and right arrows could be used to navigate 

frame-by-frame to accurately mark bout start- and stop-points. Once all 50 videos were scored, 

we used custom in-house Perl scripts to extract grooming data from the VCode event log outputs. 

The extracted data comprised the durations of grooming bouts, number of bouts, and GI for each 

fly. After all the data was put into the excel spreadsheet, we focused on figure construction and 

statistical analysis. A custom MATLAB script read the text-based VCode event log outputs to 

generate the ethogram figures that graphically illustrate the time and duration of grooming bouts 

during the 10-minute observation window. We compared the ethograms of the current user to the 

previous users to note differences in observed grooming bout length and number of bouts, which 

also corresponded to differences in GI. This was our interrater reliability (IRR) assessment to 

ascertain significant and persistent differences in the identification of grooming bouts. We 

performed a Wilcoxon Rank Sum test between the current and previous users’ data to generate p 

values to determine if there are statistical differences (i.e. p < 0.05) between the scorers in each 

metric. After comparing the results from the IRR test, we chose a working subset of ten animals 

to initiate our automated scoring pipeline. We needed to pick a reasonable number of animals 

and ten seemed like a good number for that. We chose the animals with good congruence 

between manual scores of all scorers in order to have a confident benchmark against which we 

could compare subsequent automated methods.  

Automated Scoring with EthoVision XT® 

Background calibration, arena, and detection settings 

EthoVisionXT® (hereafter referred to simply as EthoVision) is a commercially available 

behavior tracking software platform (https://www.noldus.com/ethovision-xt – Noldus 

Information Technologies, Wegeningen, the Netherlands). Although it has previously been 

https://www.noldus.com/ethovision-xt
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utilized to observe fly movement for different purposes (i.e. Kaur et al. 2015), we sought to 

implement it for automated detection of grooming-specific behaviors, building off of the work of 

previous research students (McLaughlin 2018; Feldbauer 2020). EthoVision works by first 

defining a behavioral arena in a video file in which an animal is behaving, then employing user-

defined pixel-value based identification of the subject to identify the location, size, and frame-

by-frame movement of the animal within the arena. The user is responsible for defining the 

location, size, and shape of the arena, establishing the detection threshold settings for identifying 

the subject in each video, and providing settings to determine the different behavior metrics of 

interest. Based on previous work in the lab (Feldbauer 2020), we focused on varying two 

different detection variables, activity and movement (described below), in the current analysis to 

attempt to optimize the identification of grooming. 

We started with the working subset of ten flies with the most congruent interrater 

reliability scores. The first step in EthoVision is to prompt the user for a brief description of the 

experiment. The user then calibrated the scale of the arenas by defining the distance between 

three wells of a 96-well plate at 2.6 cm (Figure 1). Background calibration also allows 

EthoVision to differentiate the background from the animal in the foreground and focus on the 

arenas containing the flies to be scored. An arena was created by drawing a circle of the exact 

same size over the well containing the fly of interest. The video trial settings were then checked 

for validation and saved. A common trial control setting was set at 600 s after arena settings had 

been completed for all the animals to limit the analysis to 10 minutes. This was done in 

correspondence to the manually scored videos that were ten minutes long. The final step for 

making the videos ready for data acquisition was to make sure that the animals would be 

detected properly.  
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Under the automated setup option of the detection settings, we delineated the fly body 

from legs and wings by drawing a box around the body of the fly (Figure 2A and B). To fine 

tune the settings, under the advanced setting option, we utilized the contour erosion and dilation 

to make sure that no legs or wings were being recognized as the body. These settings helped 

distinguish the pixels that define the body (dark pixels with low grayscale values, minimum 0) 

from the arena’s background (light pixels with high grayscale values, maximum 255) and the 

animal’s appendages (Feldbauer 2020). The center of the fly’s body was calculated as the pixel 

occupying the center of mass of the detected body outline. In addition to these parameters, we 

also altered the initial acquisition activity setting (focusing on a range of 15 to 17), which 

determined the pixel value change required to categorize a pixel as changing state from one 

frame to the next (See Table 2). The purpose of adjusting the initial activity setting was to 

clearly identify the movement of a fly’s legs in relation to the background while simultaneously 

not identifying pixels that are not associated with the fly as changing (i.e. reducing background 

noise) (Figure 2C). This logic should identify the appendage movements of a non-walking fly.  

Data acquisition and data profile creation 

 After specifying the required settings and putting all the videos and their corresponding 

arena and detection settings in a trial list, the entire video subset (n=10 flies) was ready to be 

automatically scored by EthoVision. An advantageous feature of EthoVision is that the settings 

can be modified as to allow for one video to get scored after the other without requiring the user 

to intervene in the process, thus saving time and energy. Behavior acquisition consists of the 

software determining the location of the center point of the animal, the outline of the animal, and 

the number of pixels in the arena that change values from frame-to-frame, all based on the initial 

detection settings established above (Figure 2). Post data-acquisition steps then allow different 



Mukherjee  Parameter Optimization of EthoVision XT 

15 
 

data profiles with varying activity and movement threshold parameters (See Table 2). These 

were the metrics we varied to see what parameter combinations yield the best automated scores. 

A previous student established a behavior-binning logic that includes two parameters, movement 

and activity, to classify video frames as walking, standing, and grooming (Figure 3; Feldbauer 

2020). Both parameters were assigned a certain threshold value for the purpose of behavior 

classification. Movement is defined as the distance change in the center point of the animal from 

frame to frame. If the change in center point of the animal (movement) exceeded a defined 

threshold (our movement threshold), then that the animal would be classified as “moving” 

during that frame of the video. Activity is defined as the percentage of pixels in the defined arena 

that change values beyond a the initial activity acquisition threshold between two adjacent 

frames. The activity setting that we altered was the percentage of these pixels in the arena. If the 

threshold value for movement was not exceeded (indicating the fly is not walking), then 

EthoVision would check if the percentage change of number of pixels in the arena are exceeding 

the threshold value set for the activity threshold. If the change in percentage of pixels exceeds 

the activity threshold, we considered this a grooming bout under the logic that if the animal is not 

moving (i.e. sub movement threshold value) but there is a large percentage of pixels changing 

value in the arena (i.e. above the activity threshold value), then the animal’s appendages are 

changing position, and it is therefore likely engaged in grooming. If the animal is not moving and 

the activity is also below our activity threshold, then the fly was considered to be standing. The 

main focus of this project was to use different parameter sets, specific combinations of 

movement and activity thresholds, to determine what combination yields the most accurate 

automated scores as compared to our manually-scored benchmark results. 
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For the working subset of ten videos, we generated data at three initial activity 

acquisition settings of 15, 16, and 17. At each of these acquisition settings for activity, we 

acquired data at movement thresholds of 0.05 and 0.07 cm/s with activity thresholds ranging 

from 0.10 to 0.35 (i.e. 10-35%) in increments of 0.05. Previous experiments helped us determine 

that going above 0.35 and below 0.05 activity threshold settings yielded scores with substantial 

statistical significances from the manual scores. The results from the working subset helped us 

identify a focused set of software settings to focus on for further optimization: initial activity 

acquisition setting of pixel-value change equal to 16 with movement threshold 0.05 cm/s and 

activity threshold 0.10 and 0.09 (a range of 9% to 10% change in pixels); movement threshold of 

0.07 cm/s and activity threshold of 0.15 and 0.16. These settings were then applied to the entire 

set of 50 animals.    

Python Pipeline and Statistical Analysis  

 For every parameter set, EthoVision exported a Microsoft Excel (.xlsx) file containing 

the cumulative durations of grooming, walking, and standing in seconds and percentage of total 

time the fly spends performing a certain behavior (indices). These files were put through a data 

analysis pipeline containing custom Python scripts (created by Mikayla Feldbauer) for extracting 

relevant population statistics. One of the preliminary steps in the pipeline was to convert the 

Microsoft Excel files into comma separated value files needed for extraction using Python 

(Feldbauer 2020). A key feature of Python that eases data analysis is the use of classes. A class 

in Python allows a segment of code to be reused for same operations but different data every 

time it is called. For each parameter set data, we called the EV_Analysis_SOHO class to perform 

the same calculations, such as generating the differences between manual and automated scores, 
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creating box plots of scores for the animals, implementing Kruskal Wallis and Mann Whittney U 

test for significance, and performing Ordinary Least Product (OLP) regression analysis.  

 Two different methods of measurement can never be perfect because of inconsistencies 

or biases in the method of measurement or on the part of those utilizing the method of measuring 

(Ludbrook 2010). We had two main reasons to perform a statistical analysis in our study: to 

calibrate one method against the other (i.e. automated vs. manual scores) and to detect bias in our 

automated scoring regimen (Ludbrook 2010). Through the Python pipeline, we performed an 

OLP regression analysis to detect any bias between the two methods of manual and automated 

scoring. An OLP regression plot comprises a regression line and an identity line. The y axis 

consisted of all the manual scores and the x axis those of the automated scores. The identity line 

is our theoretical target, where every y value is equal to the x value. This would indicate that 

every EthoVision generated automated score is equal to the corresponding manual score for each 

animal. A regression line is the best fit of data points and determines how close the automated 

scores are to the manual scores. OLP regression does not assume that one score is necessarily 

“correct” because both methods of scoring (i.e. manual and automated) are expected to result in 

some errors. The equation of the OLP regression line as determined in the Python pipeline 

provides values for the y intercept (indicated as a) and the slope (indicated as b). Bias can occur 

in two types: 1) fixed bias, where one method gives values that are consistently higher or lower 

than the other method, and 2) proportional bias, where one method gives values that are higher or 

lower than another method by an amount that is proportional to the level of the measured 

variable (Ludbrook 1997). Bias from an OLP regression plot can be understood with the help of 

confidence interval of the regression line. A confidence interval allows for an estimate of 

certainty around the parameter of interest (Perry et al. 2017). The a_CI95 and b_CI95 values 
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provided by the OLP function we employed are the 95% confidence intervals for a (y intercept) 

and b (slope), respectively. For our graphs, the a was the intercept and the b was the slope. A 

fixed or systemic bias is present if a_CI95 does not include the value 0, indicating that the 

regression line does not run through the origin and suggests a value higher (or lower) across the 

whole range of measurement. A proportional bias, i.e. when one method gives values that 

diverge progressively from those of the other, is present if the 95% confidence interval of the 

slope (b_CI95) does not include the value 1. 

 Correlation is another statistical technique that can show how related two variables are to 

each other (Giavarina 2015). Bland and Altman developed such a technique that would help in 

replacing an old method with a more advanced method (in our case, replacing manual with 

automated scoring) by looking at the scatterplot of the values within a population where the y 

axis is the difference in scores between the two methods for each fly and the y axis is the mean 

of the two measurements (Bland and Altman 1986). A Bland Altman plot appears like a normal 

distribution plot turned on its side. The central line is the mean and then we have intervals that 

are within 1 standard deviation followed by 2 standard deviations. Bland and Altman recommend 

that 95% of the data points lie within ±2 standard deviations of the mean difference, suggesting a 

95% confidence interval (Giavarina 2015). The in-house Python scripts called specific classes 

that generated Bland Altman plots for each of the parameter set results. 

 Good statistical practices demand reporting of some measure of variability or reliability 

for important statistical estimates (Boos and Stefanski 2011). Therefore, our final analysis 

included generating p values using Mann Whittney U and Kruskal Wallis tests. Mann Whittney 

U, also known as Wilcoxon Rank Sum test, is a non-parametric test that is performed on a large 

sample where assumptions of normal distribution are questionable (Rosner and Grove 1999). In 
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the evaluation of this pairwise test, each data point from one sample is compared to that of the 

second sample (Feldbauer 2020). The Kruskal Wallis test is also another non-parametric test that 

aims to check if two samples have originated from the same population (Guo et al. 2013). The 

biggest difference between the two tests is that Kruskal-Wallis test can accommodate more than 

two data groups whereas Mann-Whitney can accommodate exactly two data groups (Hazra and 

Gogtay 2016). We carefully analyzed the results generated by each of the statistical techniques 

and drew conclusions about optimal parameter settings.   

 

Results  

IRR demonstrates the difficulty of accurate grooming identification 

 Our interrater reliability test provided us with manual scores for GI that were ready to be 

compared to automated EthoVision-generated scores. We first sought to determine if scoring for 

grooming behavior was consistent between previous members of the lab and the current author. 

The data for GI, number of grooming bouts, and average (mean) bout length were first visualized 

with box-and-whisker plots to view the aggregate population of scores for two different sets of 

scorers for this subset of 50 animals (Figure 4; “CZ” represents the scores of Courtney Hannum 

and Zachary High (Hannum 2017), “SM” is the current author). The white lines in the middle of 

the boxes represent the median and the boxes represent the interquartile range (25th to 75th 

percentile), whereas the whiskers on the top and bottom represent 90th percentile and 10th 

percentile, respectively. We observed no statistically significant differences in the current user’s 

grooming indices and number of bouts when compared to previous student scorers (Figure 4A 

and 4B; Wilcoxon Rank Sum test p > 0.05 for both GI and number of grooming bouts, n = 50). 

However, there was a difference in the mean bout length (Figure 4C, Wilcoxon Rank Sum test p 
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< 0.05, n = 50). In the OLP regression plot, we noted how the regression and identity lines for GI 

were in close proximity to each other, and the 95% confidence intervals for the intercept and 

slope support the similarities between scorers for grooming index, but with a slight proportional 

bias noted (Figure 4D; a_CI95 for intercept = [-0.1416 0.3840] and includes 0; b_CI95 = 

[1.0441 1.1355] and does not include 1). We used the regression plot (Figure 4D) to select 10 

animals that had manual scores of the current user most congruent to the manual scores of the 

previous user to create a smaller working subset on which to perform the first screening steps for 

automated analysis. 

 We sought to determine the factors driving the difference in bout length between scorers 

by comparing ethograms of animals with disparate scores (Figure 5). An ethogram shows the 

timing and duration of individual grooming bouts over a ten-minute video interval in a graphical 

way. In each of the ethograms, the start and stop point of grooming for all the bouts remained 

very similar for all the videos, suggesting constant maintenance of the grooming indices. The 

number of bouts indicated by the number of black lines remained statistically comparable as 

well. The only parameter that showed a difference, albeit minor, was the mean bout length. For 

example, in ethogram C (Figure 5C), the last bout in SM was broken into multiple smaller bouts 

of grooming whereas the previous user CZ had scored the bout as one constant bout. Similar 

bout-breaking, due to a cumulative effect, resulted in an increase in the differences between 

users’ mean bout length. We looked further into bouts that differed between scorers (as indicated 

by red asterisks in figure 5) and determined that for many of these bouts there were indeed 

ambiguous movements or brief grooming breaks that resulted in the differences between scorers. 

These in-depth observations illustrate the difficulty in agreeing upon all grooming bouts, even 

between well trained scorers. Ultimately, however, we determined that the similarity of the 
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summary metric of GI between scorers, as supported statistically (Figure 4A and 4D) and 

graphically (Figure 5), supports the validity of our manual scoring approach to act as a 

benchmark for verifying the automated analysis we are attempting to optimize. We focused 

exclusively on GI moving forward for automated analysis. 

Initial activity setting of 16 yielded the best results in initial screens 

We began our EthoVision screen by setting up our pipeline with the 10 animals chosen 

above that had unambiguous grooming bouts as determined by detailed comparison of ethograms 

from several scorers. The purpose of this initial screen was to learn the nuances of the analytical 

pipeline and quickly determine ranges of parameter settings that would be analyzed in further 

detail with the full set of 50 animals. In a previous Honors project, Mikayla Feldbauer (2020) 

determined that an initial acquisition activity setting range of 15 to 20 should be used as the 

appropriate detection settings. This led us to question: is there a best detection setting out of 

these 6 that could generate more accurate results? We therefore started our experimental setup 

with inidial acquisition activity settings of 15, 16, and 17. All three initial acquisition activity 

settings yielded the statistically insignificant differences between manual and automated scores 

at a movement threshold of 0.05 cm/s and an activity threshold of 10% (0.10) (Figures 6A–C). 

However, for a movement threshold of 0.07 cm/s, the three initial acquisition activity settings 

had different activity thresholds that generated automated scores comparable to manual scores 

(Figure 6D–F). At an initial acquisition activity setting of 15, an activity threshold of 10% 

yielded the least statistically significant automated scores (Figure 6A and D). An activity 

threshold of 15%(0.15) produced statistically insignificant differences between manual and 

automated scores for initial acquision activity setting of 16 and threshold of 0.07 cm/s (Figure 

6E). Finally, an activity threshold of 20%(0.20) at an activity setting of 17 yielded the least 
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statistically significant differences between manual and automated scores for a movement 

threshold of 0.07 cm/s (Figure 6F). In all cases, the last set of activity thresholds of 30 and 35% 

(as indicated by the red asterisks) yielded statistically significant differences between manual and 

automated scores (Wilcoxon Rank Sum test p < 0.05, n = 10). We further observed that the 

differences yielded by the initial acquisition activity setting of 17 had outliers indicating larger 

differences between automated and manual scores (Figure 6F). We therefore narrow our choices 

between initial acquisition activity settings of 15 and 16. To simplify the next steps of our screen, 

we decided to focus on an initial acquisition activity setting 16 because modifying this setting 

requires adjusting the settings for each video in a set. Initial acquition activity settings are one of 

the more arduous variables to change in this analytical pipeline because it requires setting up 

different acquisitions of data in EthoVision for each video. We reasoned that choosing one initial 

activity setting would enable us to do a more complete sensitivity analysis of many different 

movement and activity thresholds on both our subset (n = 10 animals) and complete set (n = 50 

animals). In addition, some of our manual versus EthoVision difference boxplots supplemented 

our reasoning by depicting that the differences between the EthoVision and manual scores were 

the least for an activity setting of 16.   

Sensitivity analysis yielded successful results in a preliminary subset of animals 

 After applying the initial acquisition activity setting of 16 to the initial subset of ten 

animals, we first identified two specific parameter set combinations that were yielding 

differences between manual and automated scores (manual – automated score = 0) that were 

tending toward zero at two different movement thresholds of 0.05 cm/s (Figure 7A) and 0.07 

cm/s (Figure 7D). Movement threshold of 0.05 cm/s and activity threshold of 0.10 (i.e. 10%) 

(Figure 7A and B) and movement threshold of 0.07 cm/s and activity threshold 0.15 (i.e. 15%) 

(Figure 7D and E) showed the best results for our initial ranges of activity settings. Before we 
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proceeded with applying these settings to the entire set of 50 animals, we wanted to confirm the 

settings that we had identified. Therefore, for the movement threshold of 0.05 cm/s, we focused 

on the activity threshold range of 0.05, 0.06 0.07 0.08, and 0.09 (5% to 9%); for the movement 

threshold of 0.07 cm/s, we focused on an activity threshold range of 0.13(13%) to 0.17(17%) in 

1% or 0.1 increments (Figure 7C and F). We observed that under the focused parameter sets, for 

a movement threshold of 0.05 cm/s, an activity threshold of 0.09 (i.e. 9%) yielded indices that 

were the most similar to manual scores (Figure 7C, Wilcoxon Rank Sum test p = 0.484, n = 10). 

Similarly, for a movement threshold of 0.07 cm/s, an activity threshold of 0.16 (i.e. 16%) yielded 

automatic indices most similar to automated scores (Figure 7F, Wilcoxon Rank Sum test p = 

0.484, n =10). These activity threshold differences that were off by just 0.1 when the activity 

threshold ranges were focused on, indicated that there could be potential scaling errors in the 

graphs generated by Python that could be responsible for the differing parameter settings. We 

chose the four combinations as shown in Table 1 that yielded least statistically significant 

automated scores (i.e. highest p value under the Wilcoxon Rank Sum test) and proceeded with 

these values for the full set of 50 animals. We excluded the other activity thresholds because the 

automated scores were significantly different from manual scores (indicated by red asterisks in 

Figure 7).   

Parameter setting analysis converges on manual scores for a larger population  

 When the software setting combinations from Table 1 were applied to the entire set of 50 

animals, movement threshold of 0.05 cm/s and activity threshold of 10% yielded the least 

differences between manual and automated scores in both percent difference (Figure 8A) and 

population GI measures (Figure 8B). The box plots of grooming indices show these results 

clearly because the median of the manual scores was closest to the automated scores for the box 

plot at a movement threshold of 0.05 cm/s and activity threshold of 10% (0.10) and the 
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interquartile range boxes were most overlapping (Figure 8B). A movement threshold of 0.05 

cm/s and an activity threshold of 10% (0.10) yielded the least statistically different automated 

scores (Kruskal Wallace p value = 0.276; Figure 8). The movement threshold 0.07 cm/s along 

with activity thresholds of 15% (0.15) and 16% (0.16) showed significant underscoring of 

automated scoring when applied to the entire 50-animal data set. The distribution of percent 

differences in manual and automated scoring obtained at a movement threshold of 0.07 cm/s was 

also more spread out than the data obtained at 0.05 cm/s (figure 8A).  The results were 

confirmed by OLP regression and Bland Altman plots (see Figure 11).  

 The OLP regression analysis for the movement threshold and activity threshold 

combination of 0.05 cm/s and 10% (0.10) (parameter setting 2) contained closely aligned 

regression and identity lines (Figure 10A). A small deviation from the identity line (x = y) 

indicated potential biases in EthoVision scoring. The absence of 0 in a_CI95 indicated the 

presence of potential proportional bias (see Discussion). This was also confirmed by a positive 

correlation (graph showing a positive trend of points; increase if x with increase in y) of data 

points on the corresponding Bland Altman plot (Figure 10B). Because the OLP regression line 

was consistently above the identity line, we can infer that EthoVision constantly overcalls 

grooming behavior for this specific parameter set, which was suggested by the population 

boxplots of percent difference (Figure 8A) and grooming index (Figure 8B). The positive 

correlation of the data points on the Bland Altman confirms the proportional bias (Figure 10B).  

Potential conflict arises in different forms of comparison for the best parameter settings 

 After narrowing down the parameter settings, we decided to have one final parameter 

setup that would span over the entire range of activity thresholds from 8% (0.08) to 16% (0.16) 

at the movement threshold of 0.05 cm/s so that we could observe the percent change in 

differences from negative to positive and thus find the best fit. We observed that at a movement 



Mukherjee  Parameter Optimization of EthoVision XT 

25 
 

threshold of 0.05 cm/s an activity threshold of 10% (0.10) yields the boxplots that illustrated the 

least percent difference between manual and automated scores (Figure 9A) when the automated 

GIs were directly compared to the manual scores for each animal. Interestingly, an activity 

threshold of 14% (0.14) yielded automated GI scores that were least statistically significant from 

manual scores at the population level (Figure 9B). The setting of 14% (0.14) also yielded the 

highest Kruskal Wallace p value of 0.945, indicating that the GIs of the 50 animals were quite 

similar at the population level. Moreover, the absence of 0 in a_CI95 indicated a proportional 

bias and was also confirmed by a positive correlation of data points in the Bland Altman Plots 

(Figure 10C and D). In this set of parameter settings, the activity threshold of 8% (0.08) yielded 

the smallest p value (p = 0.015), and therefore worst settings. We therefore decided to generate 

OLP regression and Bland Altman plots to confirm if the differences are indeed significant. The 

absence of 0 in a_CI95 indicated the presence of proportional bias as was also confirmed by the 

positive correlation of the Bland Altman plot (Figure 10 D), thus confirming the poor fit of this 

parameter setting. 

There is, therefore, a conflict in how our data are expressed that shows that the most 

accurate settings on an animal-by-animal basis, as determined by the distributions of GI percent 

differences between manual and automated scoring, is different than the parameter values that 

provide the least difference at a population level. That is, with a movement threshold of 0.05 

cm/s the parameters of 14% (0.14) for activity threshold deliver the best fit of the data when 

considered as a population (Figure 9B and 10C, D), but the activity threshold of 10% (0.10) was 

the best for accurately determining the GI for each individual animal (i.e. reducing the % 

difference) (Figure 9A, 8B and 10C, D).  
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Discussion  

Manual scores as a benchmark for automated scores 

 For our project, we utilized manual scores as a benchmark to compare the semi-

automated scoring results of EthoVision. There were differences in the manual scores between 

the current and the previous users due to a difference in perception of grooming bouts. Previous 

users of VCode were scoring fve to six flies in one video whereas the current user was focused 

on one single fly under one video. That allowed the current user to pickup minute details of when 

a fly starts and stops grooming. The method of scoring or defining a grooming bout was likely 

the underlying reason as to why the current user showed a marked increase in the number of 

bouts and overall shorter bout lengths. However, it is important to note that no method is better 

than the other or more “correct.” There are tradeoffs and biases associated with both methods, 

and the IRR was a way to gauge if there were any stark differences between the current and 

previous users. We were not under the assumption that the manual scores were “correct.” We 

were simply using them as a set up to see if we can generate matching semi-automated scores 

with commercially-available software. There is a potential that EthoVision scores are more 

consistent than manual scores and thus extensive benchmarking and statistical comparisons can 

ultimately lead us to an understanding of the subtle differences between these methods. 

Successful parameter settings and benefits of the automated system 

 Our project has identified a set of software settings that yield accurate automated scores 

that are not statistically significant from manual scores at both the individual animal level and 

the population level. At a population level, a movement threshold of 0.05 cm/s and activity 

threshold of 14% (0.14) yielded the least statistically significant differences between automated 

and manual scores. At the individual animal level, a movement threshold of 0.05 cm/s and an 

activity threshold of 10% (0.10) yielded grooming indices that were most similar to manual 
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scores. In each of these cases, the p values for both the Mann Whitney and Kruskal Wallis 

statistical tests were greater than 0.05, thus confirming that there were no statistically significant 

differences between automated and manual scores. The p value for an activity threshold of 14% 

(0.14) along with a movement threshold of 0.05 cm/s was the highest (p = 0.945, n = 50). Our 

results affirm that population values can be sporadic. Throughout the project, there were no 

instances of systemic bias for the parameter sets that we chose, thus indicating that EthoVision is 

accurately capable of determining grooming behavior bouts. The other main benefit of our 

approach is that there is no extensive computing and set up of complex algorithms that were used 

in methods such as the kNN algorithm (Qiao et al. 2018). That saves a lot of time on 

familiarizing a computer system with the working of the algorithm or a training dataset like the 

kNN from Qiao et al. (2018). For example, it took a well trained user an hour for setting up the 

background and detection settings for 10 animals. EthoVision ran each of the videos for ~10 

minutes and then it took the user another 30 minutes to set up data profiles and export data. Once 

a user manual has been created for this project, a novice user can utilize EthoVision to 

automatically score fruit fly videos for grooming bouts.  

Inconsistencies with the software and some programming loopholes 

 When compared to the manual scores, throughout the project there were multiple 

instances of proportional bias which means that EthoVision tends to constantly overscore or 

underscore grooming bouts with different parameter settings (the absence of 0 in the a_CI95, 

where a is the intercept in the equation of the line of the OLP regression graph). That could 

potentially be due to the initial software settings linked to the binning logic causing certain 

behavior frames to be misclassified as grooming. This is one downside of automated scoring. 

The initial software settings are difficult to maneuver and can vary from one user to another and 
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potentiall from one video to another leading to downstream bias and error. However, once a 

thorough manual/user-guide is made, these biases could be reduced. Owing to the initial settings, 

certain behavior frames such as an instance when a fly is exhibiting a lot of body movement 

could be potentially categorized as grooming due an increased change in pixels. This can exhibit 

a cumulative effect because if too many non-grooming movements with sufficient change is 

pixels are categorized as grooming, then that can lead to overscoring and thus proportional bias. 

 We have also come to the realization that a training set plays a crucial role in the 

identification of optimal software settings. With our training set of ten specific animals we had 

narrowed down the activity threshold to a range of 10% to 15% along with a movement 

threshold of 0.05 cm/s. It would be of interest to check to see what would happen if a larger 

training set of maybe 15 or 20 animals would be used for initial assessment of semi-automated 

scoring.    

 An important observation that we made from Figure 7 was that when an analysis assay 

was run from 10% (0.10) to 35% (0.35) over 0.5 increments, at a combination of movement 

threshold 0.05 cm/s and activity threshold 10% (0.10) EthoVision yielded automated scores that 

were least statistically significant from manual scores. When a similar analysis was run at a 

focused and short range of activity thresholds, the setting that yields the least differences from 

manual scores, differed. A similar observation was made for a movement threshold of 0.07 cm/s 

and an activity threshold of 15% (0.15). That lead us to question if the graphs being generated by 

Python were actually scaled properly. If the scales of the graphs differed, then we would have a 

wrong parameter setting showing us the least differences between EthoVision and manual 

scores. This is something we seek to address in future projects. 
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Conclusion and future directions 

 Our project confirms that EthoVision can indeed be utilized for automatically scoring 

fruit fly videos for bouts of grooming, walking, and standing. An activity setting of 16, a 

movement threshold of 0.05 cm/s, and activity thresholds of 10% (0.10) and 14% (0.14) generate 

a range of automated scores that have been shown to be accurate indices of grooming. This 

indicates that EthoVision allows for the usage of multiple different parameter sets for the 

accurate scoring of grooming bouts.   

 In this project, we have identified that an initial activity setting of 16 and movement 

threshold of 0.05 cm/s yields results that are accurate over a narrow range of activity settings. 

However, the project still needs some fine tuning to identify which activity thresholds ranging 

from 10% (0.1) to 14% (0.14) would perform the best binning of video frames, thus yielding the 

best set of automated scores that align with manual scores throughout all statistical analysis 

techniques. This means that for that one specific parameter set, the particular box plot of 

differences between manual and automated scores would be close to equal to zero, the p values 

for Mann Whitney and Kruskal Wallis test would be the highest, and the regression and identity 

lines on the OLP regression plot would be in very close proximity or potentially overlap each 

other, with no indication of proportional or systemic bias. Some new statistical analysis 

technique such as a paired t test could be used to compare the results yielded by the two settings. 

The existing inhouse Python scripts could be modified to check what parameter set of movement 

and activity threshold is consistently yielding the least statistically significant differences 

between manual and automated scores. Moreover, future students should focus on graphically 

representing EthoVision-scored bouts in an ethogram to compare to manual scores in order to 



Mukherjee  Parameter Optimization of EthoVision XT 

30 
 

identify regions of conflict comparable to the interrater analysis that we performed in this study 

(as in Figure 5).  

Once the optimal software settings have been confirmed, videos of Dmfr1 mutants 

displaying excessive grooming can be uploaded on the software in contrast to wild type flies 

from DGRP to check to see if the software is able to identify all the grooming bouts. In 

preparation for that, the wild type and excessive fly grooming should be first recorded and then 

manually scored for interrater reliability. The users checking for interrater reliability should be 

on the same page regarding the definition of grooming. The software has a lot of potential of 

being used for a variety of behavioral assays and experiments should continue to exploit 

automated analysis in the quest of identifying the optimal parameter settings.  
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Figures and Legends  

 

Movement Threshold cm/s Activity Threshold 

0.05 0.09 

0.05 0.10 

0.07 0.15 

0.07 0.16 

 

Table 1: Combinations of movement and activity threshold that were used for subsequent 

analysis after an activity setting of 16 was determined to be utilized for subsequent analysis. 

 

 

 

 

 

 

Parameters  Unit 

Initial acquisition activity setting Absolute change in frame-by-frame pixel 

values 

Movement threshold cm/s 

Activity threshold Percentage of arena area 

 

Table 2: The EthoVision parameters and their corresponding units that were used to set up a 

binning logic for automated categorization of spontaneous behaviors in the Drosophila 

melanogaster. 
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Figure 1: Preliminary steps in automated scoring of videos using EthoVision included 

background calibration and creation of arenas. Under arena and background calibration 

settings, we calibrated the scale of the background at 2.6 cm across three wells and drew circular 

arenas around the fly of interest for the software to focus on.    

 

 

 

Arena 1 
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Figure 2: We used EthoVision detection settings to demarcate the fly body from the legs 

and wings so that the parameters of interest accurately bin the changes in center point and 

the percentage of pixels (A) and (B) show the detection settings that help in delineating the fly 

body from the wings and legs so that the activity threshold parameter accounts for the percentage 

change in pixels. (C) Shows the determination of the center point of the fly body movement 

threshold accounting for drastic changes in the center point of the fly. 
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Figure 3: Logic tree used by EthoVision to bin video frames into different behavior 

categories (Feldbauer 2020). As inferred from the logic tree, if a fly is moving, then it is 

walking. If a fly is not moving but highly active, then it is grooming, and if a fly is not moving 

but inactive, then it is standing. The movement thresholds of 0.05 and 0.07 cm/s were 

determined to work well in identifying moving from non-moving. The activity state is 

determined by the activity thresholds that we varied in our experiments.  
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Figure 4: Interrater reliability test statistics included OLP regression, Wilcoxon Rank Sum 

test, and box plots of grooming indices, number of bouts, and mean bout length (n =   

50). (A) There were no statistically significant differences between variations in grooming 

indices between the current and previous lab users of VCode. (B) Current user SM showed a 

marked increase in scoring the number of grooming bouts in each video (C) There was a large 

statistically significant difference in between the previous and current users in scoring the mean 

bout length. The red stars signify the low p value of the Wilcoxon Rank Sum test. (D) IRR 

analysis confirmed that the grooming indices of the new user were comparable to that of the 

previous user (p = 0.4042, a: 0.1267, b: 1.0888, a_CI95: [-0.1416 0.3840], b_CI95: [1.0441 

1.1355]). 

  

D 
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Figure 5: Series of Ethogram comparisons between the current and previous users 

depicting the variations in scoring of grooming bouts. A, B, C, and D represent the different 

videos where we observed marked differences in grooming between the two users. Each red 

asterisk signifies an instance where a grooming bout scored intact by the previous user was 

broken up by the current user. 
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Figure 6: We used initial acquisition activity settings of 15, 16, and 17 to generate grooming 

indices at movement thresholds of 0.05 cm/s and 0.07 cm/s over an activity threshold range 

of 10 to 35% (0.10 to 0.35 in increments of 0.5). The green stars represent the parameter set 

generating the least statistically significant differences between manual and automated scores 

and the red asterisks represent the parameter sets generating differences with high statistical 

significance. (A), (B), (C) are grooming indices generated at a movement threshold of 0.05 cm/s 

over an activity threshold range from 0.10 to 0.35 (with 0.05 increments) for each of the activity 

settings. (D), (E), and (F) are grooming indices generated at  a movement threshold of 0.07 cm/s 

over an activity threshold range from 0.10 to 0.35 (with 0.05 increments) for each of the activity 

settings.
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Figure 7: At an initial acquisiton activity setting of 16, the working subset of ten videos 

when implemented with the different combinations of parameter settings showed the least 

statistically significant differences between manual and automated scores at a movement 

threshold of 0.05 cm/s and an activity threshold of 10%(0.10). The green stars represent the 

parameter sets with least statistically significant scores and the red asterisks represent parameter 

sets with the most significant p values. (A) Box plot of differences between manual and 

automated scores generated at movement threshold 0.05 cm/s and activity threshold range 

between 0.10 to 0.35 in 0.05 increments. (B) Similar box plot comparisons between automated 

and manual grooming indices. (C) When closely focused at an activity threshold range from 0.05 

to 0.09, we saw that an activity threshold of 0.09 yields the least statistically significant results 

(D) At a movement threshold of 0.07 cm/s, the activity threshold of 0.15 yields automated scores 

that are not statistically significant from manual scores (E) The results from C were supported by 

the box plots showing the manual scores in comparison to automated scores where we see how 

the combination of 0.05 and 0.15 yields the least differences. (F) When focused at an entire 

range from 0.13 to 0.17, an activity threshold of 0.16 gives automated scores that are the closest 

to manual scores. 
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Figure 8: The combination of a movement threshold of 0.05 cm/s and an activity threshold 

of 10% (0.10) when applied to the entire set of 50 animals yields manual scores that do not 

show statistically significant differences between automated and manual scores. (A) Out of 

the four settings, a combination of 0.05 cm/s and 10% (0.10) yields the highest Mann Whitney p 

value 0.276 and shows differences between manual and automated scores approaching zero (B) 

When plotted against the manual grooming indices, the same combination of 0.05 cm/s 

movement threshold and 10% (0.10) activity threshold yielded scores that had a median closet to 

the manual scores.   
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Figure 9: When an entire range of activity thresholds from 0.08 to 0.16 was focused on for 

the entire set of 50 animals, the combination of a movement threshold of 0.05 cm/s and an 

activity threshold of 10% (0.10) shows the least statistically significant differences between 

automated and manual scores. However, a combination of movement threshold of 0.05 

cm/s and activity threshold of 14% (0.14) yielded the best set of grooming indices with 

medians closer to manual scores. (A) Out of the four settings, a combination of 0.05 cm/s and 

10% (0.10) shows differences between manual and automated scores approaching zero (B) When 

plotted against the manual grooming indices, the combination of 0.05 cm/s movement threshold 

and 14% (0.14) activity threshold yielded scores that had a median closest to the manual scores. 
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Figure 10: OLP regression and Bland Altman plots of the manual scores against the 

automated scores generated at the two identified software settings that vary at the 

individual animal and the population level. (A) OLP regression plot of the automated scores 

(grooming indices) generated at a movement threshold of 0.05 cm/s and activity threshold of 

10% (0.10) against the manual scores. (B) Bland Altman plot of the means of the automated 

methods against the differences between the methods for the movement threshold of 0.05 cm/s 

and activity threshold of 10% (0.10) (C) OLP regression plot of the automated scores (grooming 

indices) generated at a movement threshold of 0.05 cm/s and activity threshold of 14% (0.14) 

against the manual scores. (D) OLP regression plot of the automated scores (grooming indices) 

generated at a movement threshold of 0.05 cm/s and activity threshold of 14% (0.14) against the 

manual scores. 
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Figure 11: OLP and Bland Altman Plot of the manual scores against the automated scores 

generated at a movement threshold of 0.07 cm/s an activity threshold of 0.15% for the 

individual population. (A) OLP regression plot of the automated scores (grooming indices) 

generated at a movement threshold of 0.07 cm/s and activity threshold of 15% (0.15) against the 

manual scores.(B) Bland Altman plot of the means of the automated methods against the 

differences between manual and EthoVision  scores for the movement threshold of 0.05 cm/s and 

activity threshold of 15% (0.15). 
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