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Abstract

After exoplanets are discovered through sky surveys, such as TESS, Kepler, KELT etc., the

parameters of these exoplanets are resolved by different groups of researchers and are published

in astronomical journals. Because the methodology used in evaluating exoplanetary parameters

are different among research groups, different peer-reviewed articles will often differ in resolved

parameters for the same exoplanet. This becomes a concern when individual catalogs, with dis-

similar inclusion criteria, enter those parameters in their database. Disagreements in their data

displayed is bound to happen. This project aims to quantify the discrepancies in exoplanetary

parameters listed among these databases through a comparative analysis followed by a highlight of

the reasons behind these differences. This work specifically focuses on the most widely-used pub-

licly available databases which comprises of NASA Exoplanet Archive (NEA), Exoplanet.eu (EU)

and Open Exoplanet Catalogue (OEC). The statistical test used for comparisons was a two-sample

Kolmogorov-Smirnov test and a two-sample Anderson-Darling test. Preliminary results show that

there is no significant disagreement in mass, radius and orbital period parameters among the

databases. However, analysis of parameter distributions reveal key differences about the catalogs.
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I. INTRODUCTION

A. Exoplanet Detection & Cataloguing

Exoplanets are planets found orbiting other stars outside the Solar System. Ever

since the discovery of the first exoplanet in 1992 by Wolszczan and Frail [10], over 5347

exoplanets have been discovered and confirmed as of May 2023 by both space-led missions

and ground-based observatories [7]. The vast diversity of exoplanets discovered over the

years have contributed to the improvement of our planetary evolution models while also

challenging existing theories. For instance, in 2019, a giant exoplanet of 0.46 Jupiter masses

(MJ) was detected orbiting a very-low-mass (M-dwarf) star of 0.6 Solar masses (M⊙) which

is unusually high based on our prior predictions through simulations for such a small star

[6].

As more exoplanets are discovered, several groups of people have compiled and cat-

egorized them into publicly available databases to provide the astronomical community with

comprehensive data about these extra-solar bodies. These databases include key parameters

about many exoplanets such as the planet’s mass, orbital period and eccentricity, radius,

method of detection, distance to its host star, and information about the host star among

others. Data from these databases have been crucial in the statistical studies of exoplanets.

For example, Bean et al. [2] used a powerful statistical marginalization approach in which

they constrain a huge exoplanetary survey under parameters and measurements we deem

necessary for a planet to harbor life. This statistical approach provides context which helps

in understanding individual exoplanets and allows broad conclusions to be drawn. Further-

more, it has advantages over contemporary “planetary systems science,” which consists of

analyzing comprehensive data about individual exoplanets to infer its habitability, by over-

coming the lack of adequate individual planetary data due to current instrument limitations.

Found below are the most widely used exoplanetary databases:

• NASA Exoplanet Archive; exoplanetarchive.ipac.caltech.edu

• Exoplanet.eu; www.exoplanet.eu
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• Open Exoplanet Catalogue; www.openexoplanetcatalogue.com

B. Inclusion Criteria

Because each of these databases are updated by different groups of people, each of

them has their own criteria when deciding which planet is to be included in their databases

(inclusion criteria). The first inclusion criterion is the exoplanet’s mass. The NASA Ex-

oplanet Archive (NEA) only includes planets of less than 30 MJ while Exoplanet.eu (EU)

only includes planets of mass less than 60MJ , and no information is provided for Open

Exoplanet Catalogue (OEC). The second inclusion criterion is the confidence criteria or

literary references of the planet’s confirmation in peer-reviewed journals. While NEA and

EU only include exoplanets that have been published in peer-reviewed journals, OEC is

open-source which means that anyone, from professional astronomers to the general public,

can make contributions to the database. This signifies that it potentially includes objects

that have not yet been confirmed to be exoplanets and that have been retracted or are

controversial. These inclusion criteria disparities make a difference in what is listed in the

different databases and account for exoplanetary parameter inconsistencies. For example,

exoplanet ‘51-Eridani-b’ is recorded with a planetary mass of 2MJ in OEC and NEA but

as 9MJ in EU. Exoplanet ‘HD181720-b’ is recorded with a mass of 0.37MJ in NEA while

on EU it has a recorded mass of 12.12MJ . The planetary radius of ‘CoRoT-21 b’ is listed

as 2RJ (Jupiter radius) in OEC and Exoplanet.eu but is not listed in NEA.

Catalogue Mass Criteria Confidence Criteria Confirmed

Exoplanets

NEA < 30MJ Peer-reviewed Articles 5347

EU < 60MJ ±1σ Peer-reviewed Articles 5365

OEC - Open-source 5040

TABLE I: Summary of statistics of NEA, EU and OEC as of 4/29/2023.
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II. METHODOLOGY

Due to the data being analyzed in this project consisting of mainly unpaired data

coming from different ground-based and space-based telescopes (KEPLER, K2, TESS, KELT

etc.) with unknown mathematical distribution of the observed planetary property, non-

parametric statistical tests are crucial in the statistical comparison of such data. The

Kolmogorov-Smirnov test (KS test) is widely-used in astronomy for data analysis for this

specific reason. However, in literature, statistical tests that are much more powerful than

the KS test have been tested such as the Anderson-Darling test (AD test) [8]. In the scope

of this project, a two-sample KS test and a two-Sample AD test will be used since two sets

of data from two databases will be compared at once. This research project was initiated by

starting a pipeline in Python that includes a two-sample KS test. Afterwards, all the data

from the publicly available databases were downloaded and retrieved from the databases

mentioned above. These data were then carefully processed before being subjected to the

KS and AD tests. For instance, to be safe, for a mass comparison, any planets above 10MJ

will be discarded from this analysis because they could potentially be brown dwarfs. This

is because beyond 10MJ the boundary between super-planet and brown dwarfs gets blurry

despite the agreed lower mass boundary for brown dwarfs generally being agreed to be 13MJ

[12]. After processing, the different parameters from all the databases (mass, radius, orbital

period etc.) were subjected to the KS test, The AD test and the results were be interpreted

accordingly.

III. DATA PROCESSING

A. NASA Exoplanet Archive (NEA)

After having studied the statistics needed for my project and downloading the

databases that I will be using for my comparisons as CSV files, I quickly realized that the

data in those CSV files were not in a format ready for comparison. Each database needs to

have the data to be compared cleaned before being subjected to the KS test. Because each
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database catalogs exoplanets differently, they each came with their own sets of challenges

when cleaning up the data. The first two databases that I wanted to compare were NASA

Exoplanet Archive and Exoplanet.eu for the exoplanetary mass parameter. After retrieving

data from NASA Exoplanet Archive (NEA) as a CSV file, the first issue was that there

were 33376 confirmed exoplanet entries which is alarming considering that as of 10/11/2022

the database states having 5338 confirmed exoplanets. Upon closer inspection, it seemed

that the same exoplanet appeared multiple times as they had multiple papers attempting

to calculate their exoplanetary parameters and NEA listed all of them. I decided to use

the mass parameter from the most recent publications for each exoplanet. This is because

I noticed that for the most part, the most recent publications for planets were more com-

prehensive with parameter calculations, had the least error variability and had increased

precision especially for planetary mass (see TABLE II).

Exoplanet Name Publication Date Mass (MJ)

HD 142 b 2002 1±0.1

HD 142 b 2006 1.045±0.061

HD 142 b 2012 1.02±0.03

HD 142 b 2022 1.03838+0.4682
−0.050864

TABLE II: Exoplanet HD 142 b has 4 publications for its resolved parameters with the 2022

publication being the most precise and having less error (NASA Exoplanet Archive, 2022).

However, there was no easy way to filter for only most recent publications prior

to downloading the database. Even after downloading the data as a CSV file, the column

containing information about the data of the most recent papers resolving the planets’ pa-

rameters (namely “pl refname”) looks like gibberish. It only contains a publication link and

the authors but nothing that could be directly useful in helping to sort, filter and select the

most recently calculated exoplanetary parameters (see FIG. 1).

To resolve the issue, I first uploaded the CSV file onto Python (PyCharm IDE) as
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FIG. 1: The data in column “pl refname” that were used to filter the exoplanets to select entries

with the most recent resolved parameters.

a Pandas library dataframe. For easier manipulation, I converted the database into a giant

NumPy array so that I could easily index relevant data. In column “pl refname” the year

and the date of publication of the paper was included and that was something that could

be used to select the exoplanet mass of interest for each unique entry. I then proceeded to

iterate through all “pl refname” entries using and eliminated all alphabetic characters leaving

behind only numbers using the Re library. This left me with only numbers in “pl refname.”

I could then select the planet having the highest “pl refname” number to select the most

recent planetary mass parameter for any given planet in the database. Since the publication

year was the first number to appear every time, any numbers that followed were extraneous.

FIG. 2: Only numbers left in the “pl refname” column (2nd entry in figure) after all characters

were removed using the Re library. The first 4 numbers represent the publication year.

To select the planets with the highest number under the “pl refname” column, I

again iterated all the entries in the database through a for loop. The code goes down the

list and checks whether the name of the entry below the current one is similar or not. If

not, it looks for all similar entry names in the database and compiles them in an array. For

example, in FIG. 2 the code looked and for all planets named “Xi Aql b” and compiled all

the entries in an array. It then selects the entry with the highest “pl refname” number in

that array to select the most recent publication date. I then appended the entry of interest
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to a list called “BestPar NEA.” Due to the way I have written the code, the loop will not

consider the last unique planet entry in the database because it must check whether the

name of an entry is not similar to the entry below it to consider it a unique entry. The last

planet is as such not accounted for since there are no more entries below it, and I needed to

consider it separately. After filtering the data through the loop, the “BestPar NEA” array

was exactly 5187 entries in length which reflects the number of unique entries mentioned by

NEA. The code in FIG. 3 is for the filtering procedure.

FIG. 3: Commented code to select resolved exoplanet parameters from the most recent

publication.

B. Exoplanet.eu (EU)

For exoplanet.eu (EU), each exoplanet only has one entry. No information is provided

on whether the mass it is displaying for exoplanets comes from a most recent publication.

While they do cite the parameters they display, upon checking the mass of a dozen exoplanets,

most of them are not displaying and citing the most current publications for that specific

planet unlike NEA which displays everything. There is also no information provided on the

reason they picked to display a specific parameter value for one paper over another for a

specific planet. EU however also lists the “mass sin(i)” which is a lower mass limit of the

planets along with the nominal mass of the planets in a separate column in the database.

This is when I realized that the mass and “mass sin(i)” of planets in NEA were all put under

the mass column. In NEA, for planets that did not have a nominal mass in a publication,
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the “mass sin(i)” was listed instead. This meant that the final mass array to be used in the

comparison for NEA contained both values for planetary nominal mass and mass sin(i).

C. Mass Sin (i)

Using both values of mass and mass sin(i) is not the optimal way to compare masses

because this would be introducing unnecessary inconsistencies that would affect our mass

distributions. Ideally, if the planet’s orbital inclination i is listed in the database, a nominal

or true mass value can be calculated through the equation below:

MTrue =
MMin

sin(i)
(1)

MTrue is the actual mass of the planet, MMin is the lower mass limit of the planet

and i is the inclination of the exoplanet’s orbit. The inclination i is the angle between the

plane of an exoplanet’s orbit and the line of sight of an observer from Earth or the plane

of the sky (refer to Figure 6) [11]. All planets obtained through the radial velocity method

list the “mass sin(i)” value or their minimum mass (MTrue · sin(i)) also known as the sin(i)

degeneracy. Only when the same exoplanet has been observed through the transit method

in combination with the radial velocity method can a true mass value be calculated. This is

because in the radial velocity method, the wobble of the parent star due to the exoplanet’s

gravity is used to detect the exoplanet’s existence. If the planet is not passing directly in

the middle of its star (from the point of view from Earth), only a lower mass limit can be

estimated since the actual inclination of the planet’s orbit is unknown.

D. Open Exoplanet Catalogue (OEC)

Unlike NEA and EU, OEC’s website does not provide a way to download the data

from the database as a CSV file. Instead, the data must be directly retrieved from its GitHub

repository that is updated daily. On the GitHub, the data files are stored in both XML and
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FIG. 4: This figure [9] is a depiction of inclination i which is the angle between an exoplanet’s

orbital plane and the plane of the sky [11].

ASCII format. To retrieve and directly upload data from the XML files onto Python, the

module “XML.Etree.ElementTree” was used. It retrieves the file through a specified URL

after which we can simply iterate through the files using a for loop to find relevant parameters

(mass, radius etc.) for all objects. This procedure is described by the code snippet in FIG.

5.

FIG. 5: Commented code to retrieve data files from OEC GitHub repository.
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Once the data were retrieved, inconsistencies in the way the data were stored in the

array created errors when computing the KS test and associated CDF plot. This is because

the KS test in SciPy only accepts data in float form and the data in the array were stored

as strings. Converting the array from string to float type caused further errors. Upon closer

inspection and after detruncating the array, objects that did not have a mass value listed

were sometimes assigned the value ‘NONE’ and sometimes listed as an empty string (see

FIG. 6). This is a problem because when trying to convert the array from string to float

type, Python cannot handle the empty strings.

FIG. 6: Console showing array with empty strings as well as NONE values.

To solve the problem, through a list comprehension, I changed all strings to a NONE

value (see FIG. 7) after which, the array successfully converted from string type to float type.

Afterwards the KS test was successfully run, and the CDF plot was generated.

FIG. 7: Code converting all strings to NONE value and converting array to float.
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E. Database Planet Matching

FIG. 8: Two databases being matched results in three subsets. The match, unique A and unique

B subsets.

Before comparisons can be made, it is imperative that the parameters from the

databases that we are comparing are for the same planets across the board. If some planets

appeared in one database and not the other, a fair comparison of the parameter distributions

cannot be made. As seen in TABLE I, the databases are not equal in the number of exo-

planets they contain and with different inclusion criteria, they also differ in which exoplanets

they contain.

To resolve this issue, a method to match planets across the databases was needed.

Planetary names can be used. However, this is not the most efficient method because of

inconsistencies in planetary naming conventions. This often includes differences in capital-

ization, word order and numbering. For example, see the table below.

NEA EU OEC

Kepler-381-b 381 kepler b KEPLER 381 B

TABLE III: Planet Kepler 381b is listed under slightly different name variations in NEA, OEC

and EU.

In order to match the names, all letters were uncapilatized, all non-alphabetical

and numeric characters were removed and words were reordered so that numbers come first.

A more robust approach for similar planets with completely different names consisted of
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using planetary ID (IDs assigned by telescopes that discovered the planet), if available, to

then query on the SIMBAD Astronomical database. (SIMBAD is a collection of databases

containing objects outside the solar system that can be easily queried through object ID,

coordinates, name etc. [4])

After the implementation of these matching methods, about 500 planets remained

unmatched for each database either because they were unique planet entries for that specific

database, they had no ID, or they were controversial objects. These objects were grouped

under the unique subsets category for each of the 2 databases being compared (unique A and

unique B) while obtaining the match subset (see FIG. 8). This procedure was repeated for

all combination of databases resulting in the following subsets to be statistically compared:

• NEA match

• EU match

• OEC match

• NEA-EU unique*

• NEA-OEC unique*

• EU-NEA unique*

• EU-OEC unique*

• OEC-NEA unique*

• OEC-EU unique*

*Note: A-B unique corresponds to planets in database A but not in database B.

IV. STATISTICAL RESULT INTERPRETATION

As mentioned in the section II, a two-sample Kolmogorov-Smirnov test and a two-

sample Anderson-Darling test are used to quantify the differences in the parameter distribu-

tions between the databases because the distribution of exoplanetary parameters is unknown.
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A. Cumulative Distribution Function Plot

A Cumulative Distribution Function plot (CDF) shows the empirical cumulative

distribution function of sample data. In other words, it graphs the cumulative probability

of the data in a sample distribution against the data found in the distribution. It allows

us to determine how many data points of similar value is in our distribution. FIG. 9 is an

example of two CDF plots.

FIG. 9: CDF plot of NEA and EU with the arrow showing the KS statistic computed.

B. 2-Sample Kolmogorov-Smirnov Statistic

A 2-sample KS test measures the probability that two datasets come from the same

distribution. Visually, it is the maximum distance between the two CDF plots of the distri-

butions being compared. The 2-sample KS test is given by the following formula:

Dn,m = sup
x

|F1,n(x)− F2,m(x)| (2)

where F1,n and F2,m are the distribution functions of the two samples being compared. The

variables n and m are the sizes of the respective distributions and “sup” is the supremum
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function which takes the maximum difference between the two distribution functions, i.e the

maximum vertical distance between two CDF plots associated with the respective distribu-

tion functions (see arrow on FIG. 9).

C. 2-Sample Anderson-Darling Statistic

Similar to the 2-sample KS test, the 2-sample AD test measures the probability that

two datasets come from the same distribution. However, it is more powerful than the KS

test as it requires less data to achieve the same statistical results. It is also more sensitive

to differences if data samples have the same mean and standard deviation but differ on the

tail ends only. Visually, the 2-sample AD statistic is the weighted sum of the height of the

vertical lines as seen in FIG. 10 where more weight is given to lines that are closer together.

FIG. 10: CDF plot visually illustrating a 2-sample AD statistic [3].

The 2-sample KS test is given by the following formula:

AD =
1

mn

n+m∑
i=1

(NiZ(n+m−ni))
2 1

iZ(n+m−i)

(3)
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where Zn+m is the combination of the ordered samples Xn and Ym having size n and m

respectively. Ni is the number of data points that are equal or greater than the ith data

point in Zn+m.

D. D-statistic, AD-statistic and p-values

The raw value obtained from the KS test that quantifies the difference between two

distributions is known and reported as the D-statistic (KS statistic). The bigger the value

of the D-statistic, the higher the probability of the 2 distributions being different becomes.

Conversely, if the D-statistic is small, the probability that the two distributions are different

is low.

For the AD test, the reported value quantifies the weighted sum of the lines as seen

on FIG. 10 and is known as the AD-statistic (sometimes A2). It is interpreted similarly to

the D-statistic.

In statistics, p-values are used to determine the probability that an observation

made was by complete chance. A small p-value therefore indicates that our observation is

statistically significant. In the case of the 2-sample KS test and AD-test for a small p-value,

we then reject our null hypothesis, that is the hypothesis that there is a difference between

the two samples. In other words, for a 2-sample KS-test and AD-test, if the p-value is below

a given threshold (typically <0.05), there is a high likelihood that both distributions are

similar. A p-value above the given threshold would mean that both distributions are highly

likely to be different.

E. Kernel Density Estimation)

Kernel Density Estimation (KDE) Function is a non-parametric probability that

can visually display the shape of a distribution. Another typical way of doing this is by a

histogram (see FIG. 11). However, when comparing distributions a histogram can become

quite visually overwhelming and make it difficult to observe any potential differences hence

the use of a KDE.
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In a KDE, individual data points are represented as kernels. A kernel is a function

that is typically symmetric reaching a maximum value in the middle and tapering away from

the center. Many kinds of kernels exist to represent probability densities (see FIG. 12). For

this work, a Gaussian distribution kernel is used. To form the KDE function, the individual

heights of the kernels at each point on the x-axis are added, i.e, it is the average shape of

the the kernels added together (see FIG. 13). The KDE function is defined as follows:

f̂(x) =
1

nh

n∑
i=1

K
(x− xi)

h
(4)

where h is the bandwidth or predetermined width of the kernels, n is the number of data

points xi = {x1, x2, ..., xn}, x is a point on the x-axis at which the KDE is to be evaluated

and K represents the kernel function. K for a Gaussian kernel is defined as:

K(u) =
1√
2π

exp

(
−u2

2

)
(5)

FIG. 11: Illustration of a KDE plot (right) of a distribution as compared to a histogram (left).

[5]
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FIG. 12: Different types of kernels available on

the Scikit-learn Python library. [1]

FIG. 13: Representation of a KDE as the

average of kernels. [5]

V. RESULTS & DISCUSSION

After data processing was done, the results of mass distributions and radius distri-

butions between NEA, EU and OEC were obtained.

FIG. 14: Mass PDFs of each database’s match

(red, blue and green) and unique subsets (tan).

FIG. 15: Radius PDFs of each database’s

match (red, blue and green) and unique sub-

sets (tan).
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FIG. 16: Orbital Period PDFs of each database’s match (red, blue and green) and unique subsets

(tan).

KS test (p-values) AD test (p-values)

Comparisons Mass (M⊕) Radius (RJ) Orbital Period (d) Mass (M⊕) Radius (RJ) Orbital Period (d)

NEA-EU 1.678e-34 1.084e-7 2.217e-07 <0.001 <0.001 <0.001

NEA-OEC 2.864e-22 0.0 1.010e-6 <0.001 <0.001 <0.001

EU-OEC 0.013 0.018 7.079e-6 <0.001 <0.001 <0.001

TABLE IV: p-values obtained through the KS and AD tests for all exoplanetary parameters

compared between databases for matched subsets.

A. Biases

The first thing that can be noticed from these plots are detection biases. For example

in FIG. 14 we are more likely to detect masses at about 10 Earth masses and about 316 M⊕
(102.5) than at about 56 M⊕ (101.75). These biases are a direct result of our current detection

methods. For instance, planets found around 316 M⊕ have a high likelihood of having been
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detected through the radial velocity method since this detection method is biased towards

more massive planets. The high density of smaller planets at 10 M⊕ are planets mostly

detected through the transit method which is reasonable since these planets mostly have

relatively shorter orbital periods.

For radius (FIG. 15), it seems that we mostly detect planets at about 2.37 R⊕
(100.375) with a sudden rise in density at 13.3 R⊕ (101.125). The planets around 13.3 R⊕ are

mostly made up of objects discovered through the transit method. This is nothing surprising

since planets with larger radii produce appreciable light curves when passing in front of their

host stars and are thus more easily detected.

For Orbital period, so far, we only seem to be detecting planets with orbital periods

of about 10 days. This is because for longer periods, it is difficult to confirm the discovery

of a planet using solely indirect detection methods which are the methods that make up the

majority of our exoplanet discoveries.

B. Differences

For mass comparison, there is a high number of mostly transit planets at 10 M⊕
for all unique subsets but especially EU. This is an interesting finding because the transit

method does not allow for the mass of an object to be resolved directly. Only an upper

mass estimate can be calculated and NEA, EU and OEC all treat this estimate differently.

EU inputs the value as a nominal mass value while NEA and OEC generally treats it as

an upper mass limit or completely omits it. This difference is a direct consequence of the

different inclusion criteria of the databases.

For radius comparison, the NEA-OEC unique subset has a relatively higher density

of planets at 13.3 R⊕ (101.125). For this unique subset specifically, multiple papers revealed

that these planets have had their radii calculated using a theoretical mass-radius relation.

These planets also have surprisingly short periods which means that there could be tidal

forces affecting the radii of the planets. While NEA chooses to include these theoretical

values, OEC and EU do not.

It is also interesting to note that the distribution of EU (blue) on FIG. 16 appears
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very different compared to NEA and OEC despite p-values for NEA-OEC and NEA-EU in

TABLE IV being less than 0.05. This was likely caused by an issue with Python library

“Seaborn” that was being used to generate the plots. This issue warrants further investiga-

tion.

VI. CONCLUSION

While findings suggest that there are no significant disagreements in parameter dis-

tributions between the databases, the analysis of the probability density plots of unique

subsets do reveal differences in the data that the databases display. While these differences

are not alarming, it does highlight the inconsistency existing in the exoplanet cataloging

process between NEA, EU and OEC.

VII. FUTURE WORK

Further analysis of unique subsets is necessary to see if other differences exist within

the data displayed by the databases. While an attempt was made at matching planets

between the databases prior to analysis the amount of unmatched planets obtained and

well as shapes of the densities of the unique subsets suggests that more planets from the

unique subsets could have been matched. To obtain more conclusive results, a better planet

matching procedure needs to be implemented. It would also be interesting to see if any dis-

crepancies exist in host star parameters listed on the databases such as surface temperature,

stellar metallicity and mass. The references of the planets could also be compared between

databases which would likely entail using packages available on R.
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IX. APPENDIX

FIG. 17: CDF plot for mass distributions of NEA, EU and OEC.
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FIG. 18: CDF plot for radius distributions of NEA, EU and OEC

FIG. 19: CDF plot for orbital period distributions of NEA, EU and OEC
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FIG. 20: Summary of the dataprocessing procedure for all databases.
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