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Abstract:

There are multiple compounds that are of pharmaceutical interest that contain a
benzazepine core. Intramolecular hydroacylation of allylaminobenzaldehyde derivatives
provide a route to synthesize benzazepines. The conditions for this hydroacylation have been
optimized and a tandem hydroacylation-in situ deprotection of N,N-diallylaminobenzaldehyde
has been developed. The allylaminobenzaldehydes were prepared in a 3-step synthesis from N-
methylanthranilic acid and N, N-diallylaminobenzaldehyde was prepared in a 2-step synthesis
from aminobenzylalcohol. Upon reaction with cationic rhodium catalyst these

allylaminobenzaldehydes yielded benzazepines.

Introduction and Background:

Hydroacylation is defined as the addition of an aldehyde to an alkene. The
intramolecular hydroacylation of a molecule containing both of these functional groups can be
used to create a cyclized product. Ideally this would provide a wide range of cyclic products.
However, intramolecular hydroacylation is limited with respect to the size of the rings that can
be produced. Construction of medium-sized rings via intramolecular hydroacylation has proven
to be difficult due to an unfavorable transition state during the cyclization process.' These
medium-sized rings, specifically ones that contain a benzazepine core, are of interest because
of the pharmaceutical applications they provide.2’3 Examples of pharmaceutically active
compounds that contain a benzazepine core include Evacetrapib, 1, which is a cholesteryl ester

transfer protein inhibitor and Tolvaptan, 2, which increases sodium levels in the body.2’3 Thus,



developing an intramolecular hydroacylation method to produce medium-sized rings is of

interest.
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Intramolecular hydroacylation was initially used to prepare five-membered rings. Sakai
first reported a rhodium-promoted hydroacylation in 1972. 4-Alkenals yielded cyclopentanones

upon reaction with Rh(PPhs)sCl, also known as Wilkinson’s catalyst (Equation 1).*
Equation 1.

ﬁ

(o]
‘ 1 equiv. Rh(PPhsz)sCl
H/‘\/\/ : Q

CHCIs, CsHs, or CH3CN

30%

Although Sakai’s group was able to prepare cyclopentanones from 2- and 3- substituted
4-pentenals, stoichiometric amounts of Wilkinson’s catalyst were required for the reaction to

occur and the yields were relatively low.*



In 1980, Larock extended the scope of this cyclization. Larock found that by modifying
the monodentate ligands on the catalyst he could obtain higher yields of cyclopentanones.
However, the need for high amounts of catalyst still existed.” Later, Bosnich reported that
cyclopentanones could be produced with high enantiomeric excess in almost quantitative yields

and at low catalyst loading by using cationic rhodium catalysts (Equation 2).5

Equation 2.

~ 0, -Bi |
. 4 mol % [Rh(S-Binap)|CIO, _ O Q/r Bu
H CH,Cl,, 25°C

>99 (S) ee%

In his paper, Larock also suggested a mechanism for the intramolecular hydroacylation
reaction (Scheme 1). The active catalytic complex, 4, has a chloride and two phosphine ligands
with a fourth site occupied by a coordinating solvent or ethylene.’ The role of the ethylene is to
help prevent decarbonylation by occupying a coordination site on the rhodium. The aldehyde,
3, undergoes oxidative addition to the catalytic complex forming an acylhydridorhodium (lll)
complex, 5. Insertion of the alkene into the rhodium hydride bond yields 6. Reductive

elimination produces the cyclized product 7.”

Bosnich also reported that because decarbonylation competes with hydroacylation, side
reactions are possible. Decarbonylation, Scheme 2, occurs after oxidative addition of the
aldehyde, step I. Next instead of an alkene insertion, there is a carbonyl deinsertion, step II,

followed by a reductive elimination, step Ill. When this occurs the rhodium catalyst is no longer



active. To limit decarbonylation, he proposed the use of cationic catalysts what will favor

hydroacylation.®
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Bosnich predicted that a rhodium (I) complex a bidentate phosphine ligand would

destabilize the formation of a carbonyl intermediate 9, while stabilizing the hydrido-acyl



intermediate 8. The bidentate phosphine ligand will do this by occupying the vacant site that
would otherwise be open if monodentate ligands were used. Without the vacant site the
carbonyl deinsertion cannot occur. This accelerates intramolecular hydroacylation over
decarbonylation.® Bosnich also reported that having three sites open for the coordinating acy!
hydride and alkene groups is ideal to increase the catalytic rate of the reaction. Without these
vacancies, the catalytic rate would depend on the dissociation of the ligands. Coordinating
solvents, such as acetone, help prevent the formation of the m-aryl dimer form of the rhodium
catalytic complex, therefore increasing the catalytic activity.® Further supporting this
hypothesis, Tanaka and Fu, in 2001, reported high yields of cyclopentenones using the
bidentate ligand 1,2-bis(diphenylphosphanyl)ethane (dppe) in acetone (Equation 3).” At this

time, Tanaka and Fu did not attempt to make the analogous six-membered ring.

Equation 3.

Ph

[Rh(dppe)]2(BF4)2
o] CHsCN

88%

Another strategy to prevent decarbonylation was suggested by Willis and Weller. Here,
they focused on intermolecular hydroacylation where the strategy for the prevention of
decarbonylation is thought to be the same.® Originally, Willis and Weller hypothesized that the
use of B-S-aldehydes with hemiliabile ligands, such as DPE-Phos, would help prevent

decarbonylation. DPE-Phos protects the vacant site on the metal center that is needed to



accomadate the carbon monoxide ligand upon decarbonylation. The DPE-Phos ligand has
oxygen in the middle of the bidentate backbone. The oxygen can then associate and dissociate
readily to the vacant site. The tridentate ligands (Ph,PCH,CH,),X (X=S 12, O 13, PPh 14) and
methyl acrylate or vinyltrimethylsilane to make rhodium precursors, for oxidative addition of
aldehydes (Equation 4)8 Although, these precursors work with B-S-aldehydes, simple aldehydes
do not react with the catalytic complexes in an appreciable amount of time. Willis suggests that
the simple aldehyde cannot displace the alkene as well as B-S-aldehydes. The binding of -
sulfur aldehydes is more favorable due to the formation of a chelate allowing the displace the

alkene from the complex for the oxidative addition of the aldehyde to occur.®

PPh; PPhy

(7 (7 <—P Ph;
S 0 Ph—P
<¥Pph2 <¥Pphz <;pph2
12 13 14
Equation 4.
PPh, Rv/ (\T Ph, R (\T Ph, R (\T Ph, R
X—Rh—Cl [ s_Rh_W O—Rh—f Ph—P—Rh—W
Na[BArFA] \ \
PPh, CH,CI, PPh, PPh, PPh,

R= C(0)OMe, SiMe,

Along with the competing decarbonylation reaction, Larock reported that the reaction
was sensitive to steric hindrance associated with the aldehydes. Initially, by varying the

monodentate ligand he was able to produce the cyclopentanones of 4, 5 unsaturated



aldehydes, which were monosubstituted on the 2, 3, 4, or 5 position. When the 2 or 5 position
was disubstituted, the substrate did not cyclize.” This is due to the sterics associated with
disubstitution at those positions and the function of these positions in the mechanism. At the 2-
position, the disubstitution is alpha to the aldehyde. Substitution here may prevent oxidative
addition of the aldehyde in the mechanism. Disubstitution at the 5-position may inhibit the

insertion of the alkene into the rhodium-hydride bond due to steric hindrance.

With 5,6-unsaturated aldehydes, the intended cyclohexanone product was not
observed; Instead 2-methylcyclopentanone was produced (Equation 5).° Here, the 5,6-
unsaturated aldehyde underwent exo-cyclization, path A, as opposed to endo-cyclization, path
B, which was observed for 4-pentenal (Scheme 3). This suggests that the distance between the
aldehyde and the alkene plays an important role in intramolecular hydroacylation and

highlights the difficulty in creating rings larger than cyclopentanone.’

Equation 5.

(9}

0 I
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H X

CHzCl2
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Tanaka has also developed a method for direct hydroacylation of alkynes to make
cyclopentanones and cyclohexenones (Equation 6).° Two cationic rhodium catalysts with
monodentate phosphine ligands, typically P(OPh); or PPhs, were studied. The use of
triphenylphosphine ligands favored the formation of the cyclohexenone product over the
cyclopentanone. Other monodentate ligands with different electronic and steric characteristics
lowered the yields and bidentate ligands with large natural bite angles led to the formation of
the cyclopentanone product. Bidentate ligands with small natural bite angles did not produce

either product.’

Equation 6.

‘0 0 o}

H 0 n-C10H21
n-C10H21 \ 10 mol % [Rh(PPh3)2]BF4 —
AN CH,CI,, rt. "l

54% 30%

One method to produce medium-sized rings with direct hydroacylation was proposed by
Douglas and co-workers.'® Their method included using a cocatalyst to generate an imine
intermediate and eliminate the possibility of decarbonylation. The imine intermediate does not
have a carbonyl so it cannot decarbonylate. Douglas forms the imine in situ from the aldehyde
by reacting it with aniline and benzyl alcohol. The reaction used for optimization is displayed in

Equation 7.

10



Ri1 R1= alkene derivative

15

Equation 7.

H Rh (1), ligand

Y

DCE, 100°C
PhNH,, BzOH
pyridine derivative

The reaction rate can be influenced by varying the solvent. The reaction is fastest in

PhCF3 as compared to DCE. Under the optimized conditions a reduction in the amount of

cocatalyst from 120 mol% to 10 mol% was possible.10 The reason for this was unclear; the

solvents tested did not follow trends in solvent polarity or Lewis basicity. Triphenylphosphine

was the optimal ligand for the reaction. Sterically demanding ligands, such as tri-ortho-toyl

phosphine, suppressed the imine formation while mixed alkyl/aryl phosphine ligands decreased

the efficiency of the catalytic complex.™

Willis and Weller found that the regiochemistry of intermolecular hydroacylation

products can be affected by varying the ligand on the catalyst (Equation 8).'* Branched

products are favored by the use of o—iPr—dppe as the ligand on rhodium. To favor the formation

of linear-products, electron-rich diphosphine ligands can be used. The ligand dcpe showed

11



excellent catalytic activity and allowed for the reduction in the amount of catalyst from 10

mol% to 1 mol%.*!

Equation 8.

[Rh(nbd),]BF,
0-/Pr-dppe

H acetone, RT
R1

+ [Rh(nbd),IBF,
dcpe

R2

acetone, RT

Yamamoto and co-workers examined the effect of the ligands on the nickel-catalyzed

intramolecular hydroacylation of alkynes (Equation 9).2? Initial investigations showed that the

R2

R1

R2

reaction failed when Ni(COD), was used as the catalyst in the absence of phosphine ligands. As

a result, a series of phosphine ligands were tested. Of the ligands tested, P(i-Pr)s; proved to be

optimal in terms of electronics and sterics. Phosphine ligands with more or less steric

hindrance, such as PCysz and PMejs, exhibited lower yields for the reaction. Also, by changing the

monodentate ligand to a bidentate ligand, there was a lower yields were observed. Therefore,

having both a strong electron-donor property and adequate bulkiness is needed for the

reaction to occur.'?

12



Equation 9.

% 10 mol% Ni(COD), _
20 mol% P(i-Pr),
| toluene, 100°C \
o

In 2002, Sato reported that cycloheptenones could be produced by the hydroacylation
of 4,6-dienals via a ring-expansion (Scheme 4). Oxidative addition of the aldehyde to the
rhodium is followed by the insertion of the alkene to produce rhodium metallacyle 16. The n’-
allyl intermediate 16 can isomerizes to n*-allyl 18 via n*-allyl intermediate 17. The reductive

elimination of 18 yields the cycloheptenone product.’

Scheme 4.

17 18
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A variety of substituted cycloheptenones were produced using this reaction, an example
is shown in Equation 10." However, when the 6-alkene was in the Z conformation, cyclization
did not occur. Sato reasoned that rhodium coordinated to the latter alkene before reductive
elimination to form the cycloheptenone product. This is not favorable in the Z conformation

because it does not position the second alkene in the right alignment for the ring expansion."

Equation 10.

10 mol. % [Rh(dppe)ICIO4
\ \
R H CICH2CH.CI

65°C, 18h

62%

|O|
13% 6%

In 2002, Bendorf published her work on chelation-assisted intramolecular
hydroacylation which resulted in medium-ring heterocycles.’® She was able to react w-alkenals
and alkynals containing a Lewis basic sulfur tether atom with Wilkinson’s catalyst, Rh(PPhs)sCl,
to produce seven- or eight-membered heterocycles. Use of a sulfur tether atom promoted
cyclization; however, the use of oxygen or CH, as tether atoms did not (Equation 11).13 These
results indicate that the tether atom is necessary for hydroacylation to occur and that basicity

of the tether atom also plays a role.

14



Equation 11.

H 5-10% Rh(PPh,),Cl

S NS it, 4-12 h

The key to this reaction is the sulfur atom, which is positioned three carbons from the
aldehyde. Sulfur is able to coordinate to rhodium, which may help promote the oxidative
addition of rhodium. The mechanism for hydroacylation is illustrated in Scheme 5.* The
promotion of oxidative addition may also prevent decarbonylation, because the 4-membered

metallacyle produced by this side reaction would be too strained.

Scheme 5.

O\ H
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The distance between the aldehyde, alkene and the sulfur tether atom is critical. The

sulfur tether atom needs to be B to the aldehyde; if sulfur is closer or further away from the

15



alkene hydroacylation does not occur.”® When the aldehyde is a or y to sulfur, the complex is

not able to place the aldehyde in a favorable position where it can undergo oxidative addition

even with prior chelation to sulfur. Hydroacylation also does not occur if the distance between

the sulfur and alkene is more than three carbons, because the alkene is not able to insert into

the rhodium hydride bond.™

In 2009, Dong published a paper on asymmetric olefin hydroacylation with results that

complement Bendorf’s.**

Allyl sulfides were cyclized when the catalyst [Rh((R,R)-Me-
DuPHOS)]BF,; was used (Equation 12). These heterocycles were produced with high

regioselectivity and enantioselectivity.

Equation 12.

H 5 mol% [Rh((R R)-Me-DuPHOS)]BF,

CH.CI
22
S s
85%

99% ee

In 2012, Bendorf reported the production of nitrogen heterocycles using Wilkinson’s
catalyst.” 3-Butenyl or 3-butynyl substituted allyl amines formed heterocycles via exo-
hydroacylation and in high yield (Equation 13). When both groups on the nitrogen were allyl

groups, the predicted endo-hydroacylation did not occur (Equation 14).

16



Equation 13.

10 mol% Rh(PPhs);

/\/\ CH.Clz
N X 24h

Equation 14.

H 10 molg Bn(PPha)s
CHaCL/ N\
/\/ 24h
N N

Currently, research in the Bendorf lab is focused on the hydroacylation of N-allyl groups.
Ideally, the substituted N-allyl groups will allow us to vary the substituents a and B to the
ketone on the heterocycle. Using the butenyl or butynyl group always results in a substituent a
to the ketone. Furthermore, allyl groups are easier to install on the nitrogen than butenyl
groups via an Sy2 reaction. There is also a wide variety of allyl groups commercially available.
Since Wilkinson’s catalyst did not work for these cyclizations, a cationic rhodium (l) catalyst was
examined and, based on research described earlier, the [Rh(dppe)]BF, cationic catalyst was
chosen. Research thus far has included the preparation of substrates, examination of the effect
of allyl substitution on hydroacylation, and optimization of catalyst. With respect to the
catalyst, one aspect of particular interest is the effect of the ligand; how changing the ligand’s

electronic and steric characteristics affect the catalysts’ reactivity.

17



Results and Discussion:

The general reaction and conditions that the cyclizations occur under are illustrated in
Equation 15. A range of benzazepines can be prepared by varying the R-groups on the

substrate. Variation of the ligand and solvent can help to optimize the reaction.

Equation 15.

H cat. [Rh(ligand)]BF4
R1 - R1 R3

Solvent
T/\(\M olven )
R2 /

R3

Initial Experiments and Optimization:

A representative synthesis of a hydroacylation substrate, 19, is shown in Scheme 6. N-
methyl anthranilic acid, 16, is reduced by lithium aluminum hydride to produce 2-
(methylamino)benzenemethanol, 17. This compound is alkylated with allyl bromide. Initial
attempts of the N-alkylation were conducted with freshly distilled allyl bromide. However, the
absence of the radical inhibitor in allyl bromide led to polymerization in the reaction vessel
which in turn lowered the yield and purity of 18. To prevent polymerization, undistilled allyl
bromide and sodium iodide were added to the reaction. Once these changes were made, the
reaction proceeded as expected. The 2-(methylamino)benzenemethanol, 18, was oxidized to an

aldehyde 19 using TEMPO and diacetyliodobenzene.

18



Scheme 6.
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The conditions for the hydroacylation reaction were optimized with respect to the
solvent and amount of catalyst (Table 1). Reducing the equivalents of the catalyst from 0.10 to
0.05 had no effect on the yield of the reaction (entries 1-4). Higher yields were observed in
coordinating solvents, such as acetone. This is because the catalyst can exist as a m-aryl dimer in
non-coordinating solvent, such as dichloroethane. However, in coordinating solvents the
catalyst exists as the more reactive monomer due to the solvent’s ability to coordinate to the

complex.®

We were concerned that the product may coordinate to the rhodium complex and that
as a result, some product would be lost during purification. To determine if this would happen,
triethylamine was added to the reaction after hydroacylation was complete (Table 1, Entry 5). It
was hoped that triethylamine would displace any product still bound to the catalyst. The yield
of the product was unchanged, which suggests that this concern was unfounded. These results
led to the optimized conditions of using 5 mol % of the catalyst in acetone at room temperature
for the cyclization reactions. Once optimized conditions of the hydroacylation reaction were

identified, multiple substrates could be screened for this reaction.

19



Table 1.

H cat. [Rh(dppe)] BF,

N/\/ Solvent
| /
Entr Equivalents Temperature Solvent Yield
y of Catalyst P
1 0.05 Reflux o " | 85%
2 0.1 Reflux > | 83%
[e]
3 0.1 Room )K 92%
Temperature
o
4 0.05 Room /lk 93%
Temperature
1. Room Q
5 0.05 Temperature /lk 93%
2. NEts

Synthesis of Substrates:

The allyl halides that were chosen for the substrate were done so to provide a wide
range of information on the scope and limitations of hydroacylation reaction. Substrates were
prepared for cyclization in a manner analogous to that of compound 19. First, the compounds
were alkylated by a variety of allyl halides (Table 2). We believe the increase in yields from
entry 2 to 3 was due to the addition of 10% NaOH in the workup of the reaction to ensure the

product was not dissolved in the aqueous layer during extraction.



Table 2.

Entry | Allyl Halide | Product Yield | Entry | Allyl Halide | Product Yield

Br/\/ ©[\0H _ ©:\OH
1 o~ | 92% | 4 N | o4

o <I\OH
. 70%
D

N

3 Aﬁ @\A o 89% | 6

2 | ()\A % | s A]/ @\AY 91%
o

The amino-alcohols were oxidized to the aldehyde using a TEMPO oxidation (Table 3).
An increase in yield from entry 2 to entry 3 was thought to be due to improvement of

technique over time.



Table 3.

©i\0H
PhI(OAc) H
N ~~ r2 TEMPO
|/\/\ CH:Clz N N
R1 |
R1
Entry Substrate | Product Yield | Entry Substrate | Product Yield
[o}
SeIgp aCn O
P~ H
1 N 92% | 4 N " 95%
| e T
i o
o H OH
2 @?T/\/\ @fi\/\ 59% | 5 Q:/Y @i‘( 89%
I ! Y
(o}
3 0 89% | 6 (r or @3% 8%
Loy Y
N N o o
Y g P o

Substrate Screening:

As seen in Table 4 the aminoaldehydes were treated with [Rh(dppe)]BF; using the

optimized conditions that were determined previously (Table 1).
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Table 4 o

T/\/\RZ

R1

R2

cat. [Rh(dppe)] BF4

R1

acetone

U T

\_o

Entry Substrate Product Yield | Entry Substrate Product Yield
: @* @fb | ¢ | OL @f}

ANF N N

) e

o [e]

NN N

\ / I/\I/
3 91% 6° @ﬁ:\ F @8}_/( 45%

Reaction Conditions: 5 mol% [Rh(dppe)]BF,, 0.1M of substrate in acetone, room temperature.
a. Reaction ran at reflux.

The allyl amine substrate (Table 4, entry 1) underwent hydroacylation in high yields.

However, the crotyl analog, entry 2, failed to cyclize. This is likely due to steric strain associated

with the insertion of the alkene into the rhodium hydride bond. On the other hand, if the alkyl

substituent is on the internal carbon of the allyl alkene the substrate proceeds to cyclize, (entry

3). The vinyl ester yields an approximate 1:1 ratio of starting material to product (entry 6).

The

ester group decreases the alkene’s electron density, therefore making the coordination of the

alkene less likely to occur during the reaction.
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Vinyl halides failed to cyclized (entries 4 and 5). We suggest that this may be due to an
elimination reaction that could occur after a small amount of product is initially formed
(Equation 16). Elimination of HBr would liberate acid which could deactivate the catalyst or
protonate the N-tether atom. To prevent this from happening, a base could be added to the

reaction to neutralize the acid.

Equation 16

Addition of potassium carbonate to the reaction vessel had no apparent effect on the
reaction. Only trace amounts of product were seen. This was surprising because the reason for
the failure to cyclize is not thought to be due to steric hindrance; due to the equally bulky
methyl-substituted substrate results (Table 4, entry 3). However, halides have both electron-
donating (via resonance) and electron-withdrawing (via induction) characteristics. Therefore
failure of the reaction may be due to an electronic effect. To further understand the reasoning
for the halide’s failure, a wider variety of substituted allyl substrates need to be examined. This
will allow for the results of the halo- and ester-substituted allyl substrates to be put into
perspective. A good allyl-group to screen would be the analogous vinyl ether. Vinyl ethers
donate electron density to the alkene and would give further insight to the reaction, and

whether this is the reason the halides fail to cyclize.

24



Another substrate of interest is a conjugated allyl diene (Equation 17). This substrate
can potentially perform a ring-expansion during the coordination of the alkene to the rhodium
complex, similar to Sato’s work (Scheme 4).! The ring-expansion would allow for the production

of a 9-membered heterocycle.

Equation 17.

Rh*! Catalyst
or /
NN
| /N /N
Scheme 7.
/\/\7\ MsCI /\M
HO MS
Pyridine
ws” NN

OH OH
K2CO3
NH CH3CN N/\M

This substrate was expected to be prepared from the mesylate via Scheme 7; a route
similar to that shown in Scheme 6. However, the formation of the mesylate has been proven to
be difficult. Initially, the mesylate was then added to the reaction vessel, Scheme 7. This

method did not produce any diene product that could to be characterized by H NMR. The

25



product is thought to be a highly reactive compound due to the presence of the conjugated
diene. This high reactivity may make the mesylate unstable at room temperature. Therefore, in
the second attempt, the mesylate was prepared at 0°C with a shorter reaction time. The
mesylate was kept at 0°C and with no workup the amine was added directly into the reaction
vessel. However, this did not produce any product which we could visualize by Thin-Layer
chromatography due to the pyridine present in the reaction vessel. '"H NMR showed no
evidence of product. Having pyridine present is a problem because it smears on the TLC-plate
making it difficult to interpret the TLC results. Also, the pyridine is difficult to remove from the

reaction mixture in later steps.

A different procedure which used triethylamine, which, unlike pyridine can be removed
under vaccum was looked into (Equation 18)." Two experiments were conducted, the first
experiment involved the mesylate being added directly to the methylaminobenzyl alcohol
without a prior workup. In the second experiment, the mesylation was worked up prior to
addition to the amine. However, neither experiments worked; further optimization of this

reaction is still in progress.

Equation 18.
— _— 1.1 mol % MsCl /\M
HO/\/\/\ VS
1.5 mol % EtsN
0.2 M CH:Cl
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Optimization of Catalyst:

Optimization of the catalyst was pursued to improve the yields of products. Bidentate
ligands with diverse bite angles were screened on the rhodium catalyst. Different bite angles, or
the angle between the two phosphines, allow for different orientations of ligands on the
rhodium metal. This is significant because in order for the insertion and reductive elimination
step of hydroacylation to take place, the functional groups need to be oriented cis to one

another.

Casey and co-workers propose that the key intermediate in the hydroformylation
mechanism of is a five-coordinate bis(phosphine)rhodium complex analogous to compound 5 in
Scheme 1. This complex allows insertion and reductive elimination to occur the functional
groups need to be cis to each other. A way that may help position the functional groups cis to
each other is to have a ligand that is also coordinated cis on the rhodium. It is suggested that
chelating ligands with a bite angle close to 90° would more selectively add in a cis manner in
apical and equatorial sites in a trigonal bypyramid geometry. Therefore, the bite angle of the
phosphine ligand is of interest to look into in order to enhance the likelihood for insertion and

reductive elimination to occur.’’

We wanted to see how minor differences in bite angle would affect the catalytic activity
before making larger changes such as with DPEphos, which has a bite angle of about 102
degrees as well as different electronic properties. The ligands 1,2-
bis(diphenylphosphanyl)methane dppm, 1,2-bis(diphenylphosphanyl)ethane dppe, 1,2-

bis(diphenylphosphanyl)propane dppp, and 1,2-bis(diphenylphosphanyl)butane dppb were

27



chosen to see if small variations in the bite angle would influence the outcome of the reaction.
Bite angles for these ligands were found, by the source, doing molecular modeling while using
rhodium atom as the center, these are shown in Table 5. It is assumed that the these angles

are fairly close to those that are actually on a rhodium center.

Table 5.

Ligand Bite Angle
dppm
P pPh; 72°
dppe
85°
PhyP P Ph
dppp
91°
PhoP PPh;
dppb
98°
PhoP P Ph2

The substrates chosen for this study were the allyl benzaldehyde, 19, and the ester-
substituted allyl benzaldehyde, 20. Allyl substrate 19 was chosen to insure that the catalyst

worked and it allowed further insight into the reactivity of the catalyst (Equation 19). The ester-
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substituted allyl substrate 20 was chosen because its reactivity with [Rh(dppe)]BF4; was lower

than that of the other substrates that cyclized (Equation 20).

Equation 19.
[¢] o
H
cat. [Rh(ligand)] BF4
N/\/ acetone )
| RT /
(21)
Equation 20.

y o cat. [Rh(ligand)] BFs /

acetone

N 0/\ reflux /N <

(20)

The results of these experiments suggest that the bite angle of the diphosphine ligand
has an effect on the outcome of the hydroacylation reaction (Table 6). Initial screening
experiments used dppe as the ligand entries 2 and 6. The allyl substrate worked best with dppe
as the ligand. While using dppm the allyl substrate had to react for twenty-four hours and still
produced a lower yield than with dppe (entry 1). Also, while using dppp with the allyl substrate,
after two hours entry 3 showed no starting material via TLC, however, only a modest yield of

product was isolated. With dppb as the ligand the allyl substrate also showed a decrease in

29



reactivity. As for the ester substrate there was an improved yield with dppp as the ligand from

dppe. This is opposite of what is seen with the allyl substrate. Using dppm as the ligand did not

cyclize any product for the ester substrate. The ligand dppb only produced a low yield of

isolated product. The crotyl substrate, Table 4, entry 2, was also tested with dppp, and although

dppp worked well with the other substrates it did not cyclize the crotyl substrate (Equation 21).

Entry Substrate Product Ligand [ Bite Angle| Time Yield
. a2 R dppm 72 24hours | 88%
2 H dppe 85 2hours | 93%

/
3 T/\/ /N dppp 91 2hours | 74%
4 dppb 98 1.5hours| 74%
o
5 9 dppm 72 24 hours 0%
H
6 dppe 85 24 hours | 45%
. _ pp
7 | N dppp 91 2 hours 95%
o o) /
8 )
dppb 98 24 hours | 37%
Q [¢]
H
9 dppp 91 24 hours 0%
T/\/\ N

Reaction Conditions: 5mol% of [Rh(ligand)]BF,, 0.1 M substrate in acetone. For substrate 19 reactions were ran at room

temperature; substrate 20 at reflux.
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Equation 21.

cat. [Rh(dppp)] BF,

/\/\
T acetone N

2 /

21

The results of varying the bite angle of the ligand showed an increase in reactivity of the
catalyst for those ligands whose bite angle was within five degrees of 90°. This supports the
initial theory that ligands that will be more likely to coordinate in a cis fashion to the rhodium
complex will increase the likelihood of reductive elimination. This will, theoretically, increase
the reaction rate. Dppm, whose bite angle is 72°, showed a decrease in reactivity. This may be
because the bite angle is so small the functional groups involved in the reductive elimination
are more likely to spread out on the catalytic complex slowing down in step in the mechanism.
Dppb whose bite angle is 98° also showed a decrease in the formation of product. This is
thought to be due to the large bite angle forcing the functional groups involved in the reductive

elimination step closer together hindering the reductive elimination of the product.

Ligands that have a broader range of electronic properties and bite angles were
examined (Table 6). The ligands examined were DPE-Phos, 1, 2
Bis(dipentafluorophenylphosphino) ethane (dfppe), (R, R)-MeDUPHQOS, and Tris(4-
methoxyphenyl) phosphine, P(PhOMe)s. Since P(PhOMe)s is a monodentate ligand it does not
have a bite angle. These ligands vary not only by their bite angle, but they also have different
electronics properties.'® These ligands were tested under the same conditions as the previous

group of ligands with the allyl, ester, and crotyl substrates. These results are shown in Table 7.
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Table 6.

Ligand Bite angle
dfppe
*85
(CGF5)2 P P (CeF5)2
DPE-Phos
Q\O/@ 102°
PPhy P Phy
(R, R)-Me DUPHOS
83°

je2s!

P(PhOMe);

Ly

*The ligand, dfppe, is estimated to have the approximately

the same bite angle as dppe.
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Table 7.

Entry Product Ligand Bite Angle Time Yield
1¢ dfppe *85 24 hours 0%
a

2 ? DPE-Phos 102 24 hours 13%

3 /“‘ <3 (R, R)-Me DUPHOS 83 24 hours 0%

4 P(PhOMe), 24 hours 0%
Q

5 dfppe *85 24 hours 0%

6 N (R,R)-Me DUPHOS 83 24 hours 80%
o]

7 DPE-Phos 102 24 hours 0%

8 /N P(PhOMe), 24 hours 0%

Reaction Conditions: 5mol% of [Rh(ligand)]BF,, 0.1 M substrate in acetone. For substrate 19 and 21 reactions were run at room
temperature; substrate 20 at reflux. a was run at refux.

When dfppe was used as a ligand, the reaction ceased (entries 1 and 5). This could be
due to the dfppe ligand being a poor o-donor because of the fluorinated phenyl groups
attached to the phosphorous. This creates a deficiency of electron-density towards the metal.

The less electron-rich rhodium may be sluggish as a result.

With DPE-Phos there was a decrease in the reactivity of the rhodium complex (entries 2
and 7). This may be due to the oxygen in the backbone of the ligand. As mentioned before
Willis and Weller looked into DPE-Phos as a ligand for their intermolecular hydroacylation
reaction with simple aldehydes.? The found that, DPE-Phos was attractive because of the

oxygen’s ability to associate and dissociate off of the rhodium complex. However, for the
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analogous intramolecular hydroacylation reaction with the chelating nitrogen this could have
the complete opposite effect. The fact that the oxygen can associate and dissociate off of the
complex might actually disfavor the oxidative addition and the reductive elimination steps of
the reaction. Both of which are essential for the cyclization of product. Another reason could
also be due to the larger bite angle. As seen with the other set of ligand screenings, as the bite

angle increased over 90° the reactivity of the catalyst decreased.

As for (R, R)-MeDUPHQS, there is a slight decrease in the reactivity of the catalyst with
the allyl substrate, while no product was seen for the ester substrate. This may be due to the
bite angle of the ligand which is 83°. As mentioned before with the first testing of ligands, the
hydroacylation reaction was favored by ligands whose bite angles were within 5° of 90° to help
with the reductive elimination step. One other reason for the decrease in the formation of
product may be due to steric hindrance of the backbone. With (R, R)-MeDUPHOS there is now
an aryl group in the backbone. There is also steric hindrance associated with the methyl groups

on the phospholane rings that could hamper the reaction.

The monodentate ligand P(PhOMe); was screened with the crotyl substrate instead of
the allyl substrate. Yamamoto used monodentate ligands on his nickel hydroacylation catalyst.
He found that bulky, strongly electron-donating ligands led to the best catalysts. His promising
results led to the use of this ligand in our ligand studies. In our case , the monodentate ligand
did not show these promising results; neither substrate cyclized. Monodentate phosphine
ligands are not ideal, possibly because they are labile. This can be problematic because it can

hinder the cis geometry needed for the reductive elimination step.
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An overview of all the ligand studies shows the need for the ligands bite angle to be as
close to 90° as possible in order to promote the reductive elimination of the product from the
rhodium complex. Sterically hindered ligands are not ideal on the catalyst for this reaction.
Furthermore, electron-withdrawing ligands are not ideal for this reaction because they slow the
initial oxidative addition of the aldehyde into the rhodium complex. Lastly, monodentate

ligands are not ideal due to the ease with which they can dissociate.

Table 9.

H 1. cat. [Rh(dppe)] BF4

N/\/ Solvent
K‘ 2. H20 ”
Equivalents of .
Entry Temperature Added Reagents Solvent Yield
Catalyst
1 0.05 Reflux - > 47%
2 0.1 Reflux 9:1 CHsCN:H,0 C./\/CI 72%

After 3.5 h

Room

o
3 0.05 - )K 60%
Temperature
i

Room H,O

0,
Temperature After 3h 88%

4 0.05

An in situ hydroacylation-deprotection reaction was also investigated for cyclization of N, N-
diallylaminoaldehyde. The deprotection of the amine allows for subsequent modification at the

amine (Table 9). This reaction was run in both non-coordinating and coordinating solvents.
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Similar to previous results, higher yields were observed with coordinating solvents. Yields of the

deprotected product were also increased by the addition of water after hydroacylation.

Conclusions:

In conclusion, hydroacylation reactions are optimally run in coordinating solvents such
as acetone. Success of the reaction depends on the substitution on the allyl substituents.
Substitution on the internal alkene carbon by alkyl and ester groups is tolerated; however,
lower yields are obtained for the ester substrate. Vinyl halides do not undergo hydroacylation.
Substitution on the terminal alkene carbon blocks hydroacylation. Studies on the catalyst show
that dppe and dppp ligands provide the highest yield of products. The bite angle of the ligand
needs to be within 5° of 90° otherwise the reaction will decrease in reactivity. Poor o-donor
ligands are not effective in for this type of intramolecular hydroacylation. Lastly, an in situ

hydroacylation-deprotection reaction has been developed.
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Experimental:

General Methods:

All reactions were carried out under nitrogen or argon atmosphere, using oven-dried
glassware unless otherwise noted. Methylene chloride and acetonitrile were distilled from
calcium hydride. Anhydrous acetone and tetrahydrofuran (THF) were used as received. 2-amino
benzyl alcohol was recrystalized from hexand and toluene. All other reagents were used as
received. The catalyst, [Rh(ligand)]BF4, were prepared according to literature methods. All
reactions were monitored using thin layer chromatography (TLC) or gas chromatography. Thin
layer chromatography was performed using Analtech, silica gel-GF, 250 microns, glassed-back
plates and visualized by using ultraviolet (UV) light and iodine. Gas chromatography was done
using a Hewlett Packard 5890A Gas Chromatograph. Products were purified using column
chromatography with 70-230 mesh silica gel (Merck, 60 grade) and specified proportions of
hexane and ethyl acetate as the mobile phase. Infrared (IR) spectra were obtained using a
Thermo Electron IR100 equipped with an ATR device. Nuclear Magnetic Resonance spectra, ‘H
and *3C, were obtained using a Bruker Avance DPX-300 NMR Spectrometer. NMR spectra were

taken using CDCl; as the solvent and TMS as the reference.

Preparations of Substrates:

OH
A. 2-(methylamino)benzenemethanol (KAW-1-039) @:;

A 250-mL round bottom flask equipped with a dropping funnel was charged with lithium

aluminum hydride (1.5781 g, 0.04158 mol). The flask was cooled to 0 °C and THF (30 mL) was
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added via syringe into the dropping funnel then drop-wise into the flask. An Erlenmeyer flask
was charged with a dark purple solution of n-methylanthranilic acid (3.1495 g, 0.02084 mol)
and THF (30 mL). The N-methylanthranilic acid solution was added to the dropping funnel, and
was added drop-wise to the 0 °C reaction mixture over 40 minutes. The reaction fizzed and
turned blue-green. The reaction was warmed to room temperature and THF (20 mL) was
added. The reaction was heated to reflux overnight then cooled to 0°C and diluted with ether
(40 mL). Water (1.58 mL), 10% sodium hydroxide (2.4 mL), and water (4.75 mL) were added
slowly. The reaction was warmed to room temperature, stirred 15 minutes and anhydrous
magnesium sulfate (approximately 1.5 g, 0.12 mol) was added. After stirring for 15 minutes, the
reaction was filtered through celite with ether (100 mL). The filtrate was washed sequentially
with 10% sodium hydroxide (2x30 mL), water (30 mL), and brine (40 mL), and then dried over
sodium sulfate. The solvent was removed in vacuo and the crude product that was purified by
column chromatography using hexane: ethyl acetate (90:10). This yielded the pale yellow oil
title compound (2.3535 g, 0.01716 mol, 82%). IR (neat, cm'l): 3399.9, 2869.5, 2813.3, 1606.8,
1585.7,1512.4, 1456.3, 1308.3, 1166.3, 989.9, 745.5. 'H NMR (300 MHz, CDCl3 6): 7.25 (m, 1H,
phenyl H), 7.03 (dd, J= 7.6, 1.6 Hz, 1H, phenyl H), 6.64 (m, 2H, phenyl H), 4.61 (s, 2H, CH,OH),
2.85 (s, 3H, CH3NH). *C NMR (75 MHz, CDCl; 8): 148.5 (phenyl C), 129.7 (phenyl C), 128.9

(phenyl C), 124.3 (phenyl C), 116.4 (phenyl C), 110.1 (phenyl C), 64.69 (CH,0OH), 30.3 (CHsNH).
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OH
B. 2-[(methyl)(2-propen-1-yl)amino]benzenemethanol (KAW-1-040 @i\
[(methyl)(2-propen-1-yl) ] ( ) NS

A 50-mL round bottom flask was charged with 2-(methylamino)benzenemethanol (0.4481 g,
3.337 mmol) and acetonitrile (12 mL). Potassium carbonate (0.9307 g, 6.734 mmol) was added
and a condenser attached. Allyl bromide (0.306 mL, 3.54 mmol) was added via syringe and
afterwards the condenser was rinsed with acetonitrile (3 mL). The reaction was refluxed
overnight and the color of the solution changed from clear to brown. The reaction solution was
transferred with ether (3x5 mL) then with water (10 mL). The solution was extracted with ether
(3x20 mL). The ether extract was washed with brine (3x20 mL) and dried over sodium sulfate.
The solvent was removed in vacuo and purified using column chromatography in hexane: ethyl
acetate (95:5). This yielded the title compound as a pale yellow oil (0.2535 g, 1.430 mmol,
42.5%). IR (neat, cm™): 3397.80, 3072.00, 2846.34, 2793.03, 1643.56, 1490.03, 1451.16,
1026.61, 917.55, 763.73, 725.24. *H NMR (300 MHz, CDCl38): 7.26 (m, 1H, phenyl H), 7.21 (m,
2H, phenyl H), 7.12 (m, 1H, phenyl H), 5.88 (ddt, J = 16.6, 10.2, 6.5 Hz, 1H, CH=CH,), 5.46 (s, 1H,
OH), 5.21 (m, 2H, CH=CH,), 4.81 (s, 2H, CH,0H), 3.54 (dt, J=6.5, 1.2 Hz, 2H, CH,CH), 2.69 (s, 3H,
CHsN). *C NMR experiment KAW-1-087 (75 MHz, CDCl; 6): 151.3 (phenyl C), 135.78 (phenyl C),
134.40(alkene C), 128.52 (phenyl C), 128.11 (phenyl C), 124.71 (phenyl C), 121.46 (phenyl C),

118.46 (alkene C), 64.91 (CH,0H), 64.10 (NCH,CH=CH,), 41.54 (CHsNH).
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OH
C. 2-[(methyl)(2-buten-1-yl)Jamino]benzenemethanol (KAW-1-044) @jN\/\A

A 100-mL round bottom flask was charged with 2-(methylamino)benzenemethanol (0.5061
g, 3.670 mmol) and acetonitrile (25 mL). Potassium carbonate (1.0289g, 7.4444 mmol) was
added and a condenser attached. Crotyl bromide (0.456 mL, 4.43 mmol) was added via syringe
and afterwards the condenser was rinsed with acetonitrile (5 mL). The reaction was refluxed
overnight and the color of the solution changed from colorless to dark yellow. The reaction
solution was transferred with ether (3x5 mL) then with water (10 mL). The solution was made
basic to about pH 9. The solution was extracted with ether (3x20 mL). The ether extract was
washed with brine (3x20 mL) and dried over sodium sulfate. The solvent was removed in vacuo
and purified using column chromatography in hexane: ethyl acetate (95:5). This yielded a
mixture of the cis and trans isomers of the title compound as a pale yellow oil (0.5337 g, 2.790
mmol, 76%). *H NMR (300 MHz, CDCl3 8): 7.26 (m, 1H, phenyl H), 7.20 (m, 1H, phenyl H), 7.14
(m, 2H, phenyl H), 5.77 (s, 1H, CH,OH), 5.63 (m, 1H, CH=CHCHs), 5.54 (m, 1H, CH=CHCH), 4.81
(s, 2H, CH,0H), 3.44 (d, J = 6.5 Hz, 2H, CH,CH=CH), 2.66 (s, 3H, CH3N), 1.71 (m, 3H, CH=CHCH;).

o

‘ Br
D. 2-[(methyl)(2-bromo-2-propen-1-yl)amino]benzenemethanol (KAW-1-049)

A 50-mL round bottom flask was charged with 2-(methylamino)benzenemethanol (0.2771 g,
2.020 mmol) and acetonitrile (15 mL). Potassium carbonate (0.5602 g, 4.053 mmol) was added

and a condenser attached. 2,3-Dibromopropene (.4925 g, 2.464 mmol) was added to a test
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tube and dissolved with acetonitrile (2 mL). The solution was added to the reaction flask under
nitrogen flush. The test tube was rinsed and transferred with acetonitrile (3x1 mL). The reaction
was refluxed overnight and the color of the solution changed from colorless to pinkish brown.
The reaction solution was transferred with ether (3x5 mL) then with water (10 mL). The solution
was made basic to about pH 9. The solution was extracted with ether (3x30 mL). The ether
extract was washed with brine (3x20 mL) and dried over sodium sulfate. The solvent was
removed in vacuo and purified using column chromatography in hexane: ethyl acetate (95:5).
This yielded the pale yellow-orange oil title compound (0.3807 g, 1.762 mmol, 87.2%). IR (neat,
cm'l): 3378.12, 2950.74, 2851.16, 2798.38, 1629.63, 1598.84, 1490.53, 1451.29, 1233.38,
1172.53, 1086.11, 1023.58, 939.91, 897.26, 764.86. ‘H NMR (300 MHz, CDCl3 6): 7.26 (m, 2H,
phenyl H), 7.18 (m, 1H, phenyl H), 7.13 (m, 1H, phenyl H), 5.93 (dt, /= 1.76, 1.18 Hz, 1H,
BrC=CH,), 5.67 (d, J= 1.76, 1H, BrC=CH,), 4.81 (s, 2H, CH,0H), 4.36 (s, 1H, CH,OH), 3.73 (s, 2H,
CH,BrC=CH,), 2.68 (s, 3H, CH3N). **C NMR (75 MHz, CDCl; 8): 151.1 (phenyl C), 136.27 (phenyl
C), 130.78 (phenyl C), 129.18 (phenyl C), 128.51 (phenyl C), 125.07 (phenyl C), 121.45 (alkene

C), 119.92 (alkene C), 65.31 (NCH,CBr=CH,), 64.10 (CH,OH), 41.59 (CH;NH).

sed

E. 2-[(methyl)(2-methyl-2-propen-1-yl)amino]benzenemethanol (KAW-1-057)

A 25-mL round bottom flask was charged with 2-(methylamino)benzenemethanol (0.3578 g,
2.609 mmol) and acetonitrile (7 mL). Potassium carbonate (0.7224 g, 5.227 mmol) was added
and a condenser attached. 2-methyl-3-chloropropene (0.306 mL, 3.13 mmol) was added via

syringe and afterwards the condenser was rinsed with acetonitrile (6 mL). The reaction was
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refluxed overnight and the color of the solution changed from colorless to pinkish purple.
Sodium iodide (0.5875 g, 3.917 mmol) was added to the reaction and was allowed to reflux
overnight again. The reaction solution was transferred with ether (3x5 mL) then with water (10
mL). The solution was made basic to about pH 9. The solution was extracted with ether (3x20
mL). The ether extract was washed with brine (3x20 mL) and dried over sodium sulfate. The
solvent was removed in vacuo and purified using column chromatography in hexane: ethyl
acetate (95:5). This yielded the title compound as a beige oil (.4439 g, 2.321 mmol, 89%). IR
(neat, cm'l): 3361.48,3072.03, 2942.21, 2844.68, 2793.94, 1489.97, 1450.14, 1025.64, 895.87,
761.81, 725.81. *H NMR (300 MHz, CDCl3 8): 7.27 (m, 1H, phenyl H), 7.22 (m, 2H, phenyl H),
7.11 (m, 1H, phenyl H), 5.06 (s, 1H, CH,0H), 5.01 (s, 1H, CH, C(CH3)=CH,), 4.96 (s, 1H, CH,
C(CH3)=CH;), 4.82 (s, 2H, CH,0H), 3.44 (s, 2H, CH, C(CH3)=CH,), 2.61 (s, 3H, CHsN), 1.81 (s, 3H,
CH,CH3C=CH,). *C NMR (75 MHz, CDCl3 &): 152.05 (phenyl C), 141.86 (alkene C), 135.69 (phenyl

C), 128.55 (phenyl C), 128.26 (phenyl C), 124.63 (phenyl C), 121.25 (phenyl C), 114.20 (alkene

o

‘ Cl

C), 64.62 (NCH,CCH3=CH,), 64.13 (CH,0H), 41.56 (CHsNH).

F. 2-[(methyl)(2-chloro-2-propen-1-yl)amino]lbenzenemethanol (KAW-1-073)

A 25-mL round bottom flask was charged with 2-(methylamino)benzenemethanol (0.2180 g,
1.589 mmol) and acetonitrile (5 mL). Potassium carbonate (.4428 g, 3.204 mmol) was added
and a condenser attached. 2,3-dichloropropene bromide (0.175 mL, 1.900 mmol) was added via
syringe and afterwards the condenser was rinsed with acetonitrile (5 mL). The reaction was

refluxed overnight and the color of the solution changed from clear to dark yellow. The reaction

44



solution was transferred with ether (3x5 mL) then with water (10 mL). The solution was made
basic to about pH 9. The solution was extracted with ether (3x20 mL). The ether extract was
washed with brine (3x20 mL) and dried over sodium sulfate. The solvent was removed in vacuo
and purified using column chromatography in hexane: ethyl acetate (98:2). This yielded the title
compound as a beige oil (0.3063 g, 1.447 mmol, 91%). IR (neat, cm™): 3389.44, 2950.96,
2851.20, 1634.88, 1490.86, 1451.38, 1088.79, 1024.16, 941.50, 891.31, 765.49. 'H NMR (300
MHz, CDCl3 6): 7.28 (m, 2H, phenyl H), 7.19 (m, 1H, phenyl H), 7.14 (m, 1H, phenyl H), 5.47 (q, J=
1.13 Hz, 1H, CH,CCI=CH,), 5.41 (d, J= 1.13, 1H, CH,CCI=CH;), 4.80 (s, 2H, CH,0OH), 4.48 (s, 1H,
CH,0H), 3.69 (s, 2H, CH,CCI=CH,) , 2.69 (s, 3H, CH3N). **C NMR (75 MHz, CDCl; 8): 151.13
(phenyl C), 138.98 (phenyl C), 136.28 (phenyl C), 129.12 (phenyl C), 128.49 (phenyl C), 125.11

(alkene C), 121.47 (phenyl C), 115.63 (alkene C), 64.23 (NCH,CCI=CH,), 63.53 (CH,0H), 41.58

©j\OH o)
N/\/\O/\
|

G. 2-[(methyl)(2-ethylpropanoate-2-propen-1-yl)amino]benzenemethanol (KAW-I-065)

(CH3NH).

A 50-mL round bottom flask was charged with 2-(methylamino)benzenemethanol (0.2062g,
1.503 mmol) and acetonitrile (10 mL). Potassium carbonate (.4155 g, 3.006 mmol) was added
and a condenser attached. Ethyl 2-(bromomethyl) acrylate (0.249 mL, 1.803 mmol) was added
via syringe and afterwards the condenser was rinsed with acetonitrile (5 mL). The reaction was
refluxed overnight and the color of the solution changed from clear to milky white. More ethyl
2-(bromomethyl) acrylate (0.2915 mL, 2.111 mmol) and sodium iodine (0.2262 g, 1.509 mmol)

was added. The color of the solution turned yellow. The reaction was refluxed overnight and
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the color of the solution changed from yellow to milky yellow. The reaction solution was
transferred with ether (3x5 mL) then with water (10 mL). The solution was made basic to about
pH 9. The solution was extracted with ether (3x20 mL). The ether extract was washed with
brine (3x20 mL) and dried over sodium sulfate. The solvent was removed in vacuo and purified
using column chromatography in hexane: ethyl acetate (95:5). This yielded the title compound
as a beige oil (0.2611 g, 1.047 mmol, 70%). 'H NMR (300 MHz, CDCl5 6): 7.29 (m, 1H, phenyl H),
7.22 (ddd, J=7.55, 4.32, 1.59 Hz, 1H, phenyl H), 7.12 (m, 1H, phenyl H), 6.34 (d, J= 1.32 Hz, 1H,
CH,C(COOCH,CH3)=CH,), 5.78 (q, /= 1.32, 1H, CH,C(COOCH,CH3)=CH,), 4.73 (s, 2H, CH,0OH), 4.64
(s, 1H, CH,0H), 4.22 (q, J= 7.13 Hz, 2H, CH,C(COOCH,CHs)=CH,) , 3.78 (s, 2H,
CH,C(COOCH,CH3)=CH,), 2.65 (s, 3H, CH3N), 1.29 (t, J= 7.13 Hz, 3H, CH,C(COOCH,CH3)=CH,). B¢
NMR (75 MHz, CDCl; 8): 166.65 (C=0), 151.60 (phenyl C), 136.86 (phenyl C), 136.55 (phenyl C),
129.08 (alkene C), 128.39 (alkene C), 128.24 (phenyl C), 124.96 (phenyl C), 121.60 (phenyl C),

64.13 (CH,0H), 61.11 (NCH,C(COOCH,CH3)=CH,), 57.88 (COOCH,CH;), 42.41 (CH;NH), 14.14

((COOCH,CH3).
©j\OH
N/\/
H. 2-[(diallyl)Jamino]benzenemethanol (KAW-1-004) H

A 250-mL round bottom flask was charged with 2-aminobenzylalcohol (1.5448g, 12.54
mmol) and acetonitrile (40 mL). Potassium carbonate (5.2240 g, 37.80 mmol) followed by
sodium iodide (4.7482 g, 31.68 mmol). Allyl bromide (3.4 mL, 39.06 mmol) was added via
syringe and afterwards the condenser was rinsed with acetonitrile (5 mL). The reaction was left

at room temperature over the weekend and the color of the solution changed from golden to
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red-brown. The reaction solution was transferred with ether (3x5 mL) then with water (10 mL).
Sodium bicarbonate (20 mL) was added to the solution. The solution was extracted with ether
(3x20 mL). The ether extract was washed with brine (3x30 mL) and dried over sodium sulfate.
The solvent was removed in vacuo and purified using column chromatography in hexane: ethyl
acetate (95:5). This yielded the title compound as a yellow oil (2.2200 g, 10.92 mmol, 87%). IR
(neat, cm'l): 3392.21, 3074.25, 2978.30, 2821.96, 1641.81, 1598.44, 1593.78, 1488.37, 1451.89,
1417.19, 1209.71, 1025.01, 990.81, 917.39. 'H NMR (300 MHz, CDCl3 8): 7.25 (m, 1H, phenyl H),
7.17 (m, 2H, phenyl H), 7.09 (m, 1H, phenyl H), 5.82 (ddt, J= 17.1, 10.3, 6.5 Hz, 2H, CH=CH,),
5.27 9 (s, 1H, OH), 5.17 (m, 4H, CH=CH), 4.80 (s, 2H, CH,0H), 3.61 (d J= 6.5 Hz, 4H, CH,CH=CH,).
13C NMR (75 MHz, CDCl; 6): 148.94 (phenyl C), 136.66 (phenyl C), 133.97 (alkene 2C), 128.49
(phenyl C), 127.72 (phenyl C), 124.91 (phenyl C), 123.25 (phenyl C), 118.60 (alkene 2C), 64.76

(CH,0H), 56.63 (NCH,CH=CH,, 2C).

I. 2-[(methyl)(2-propen-1-yl)amino]benzaldehyde (KAW-1-041
[(methyl)(2-propen-1-yl) ] yde ( ) N

A 25-mL round bottom flask was charged with 2-[(methyl)(2-propen-1-
yl)amino]benzenemethanol (0.2365 g, 1.330 mmol) and methylene chloride (7 mL). TEMPO
(0.0417 g, 0.2660 mmol) and iodobenzene diactetate (0.5141 g, 1.596 mmol) were added to the
flask. The reaction was stirred at room temperature overnight; and the color of the solution
changed from orange to red-brown. The solution transferred with ether (3x5 mL) and made
slightly basic with saturated sodium bicarbonate (25 mL). The solution was extracted with ether

(3x15 mL). The ether extract was washed with sodium thiosulfate (3x20 mL) and brine (3x20

47



mL) sequentially and dried over sodium sulfate. The solvent was removed in vacuo. The crude
product was purified using column chromatography in hexane: ethyl acetate (99:1). This yielded
the title compound as bright yellow oil (0.1189 g, 0.6786 mmol, 51%). IR (neat, cm™): 3070.29,
2981.32, 2853.47, 2789.32, 1680.99, 1595.12, 1481.78, 1452.21, 1280.49, 1180.26, 921.90,
830.11, 758.96. 'H NMR (300 MHz, CDCl3 6): 10.27 (s, 1H, CHO), 7.78 (dd, J= 7.7, 1.7 Hz, 1H,
phenyl H), 7.48 (ddd, J= 8.3, 7,2, 1.7 Hz, 1H, phenyl H), 7.10 (m, 2H, phenyl H), 5.87 (ddt, J=
17.1,10.2, 5.9 Hz, 1H, CH=CH,), 5.26 (m, 2H, CH=CH,), 3.73 (d, J= 5.9 Hz, 2H, CH,CH=CH,), 2.86

(s, 3H, CHsN).
O
I

H
J.  2-[(methyl)( 2-buten-1-yl)amino]benzaldehyde (KAW-I-046) ©\AN/\7\
|

A 50-mL round bottom flask was charged with 2-[(methyl)(2-buten-1-yl)
amino]benzenemethanol (0.5184 g, 2.711 mmol) and methylene chloride (15 mL). TEMPO
(0.0855 g, 0.547 mmol) and iodobenzene diactetate (1.0515 g, 3.2646 mmol) were added to the
flask. The reaction was stirred at room temperature overnight; and the color of the solution
changed from orange to dark brown. The solution transferred with ether (3x5 mL) and made
slightly basic with saturated sodium bicarbonate (25 mL). The solution was extracted with ether
(3x15 mL). The ether extract was washed with sodium thiosulfate (3x20 mL) and brine (3x20
mL) sequentially and dried over sodium sulfate. The solvent was removed in vacuo. The crude
product was purified using column chromatography in hexane: ethyl acetate (99:1). This yielded
a mixture of cis and trans title compound as a bright yellow oil (0.3005 g, 1.588 mmol, 59%). IR

(neat, cm™): 2938.61, 2852.92, 2724.50, 1681.93, 1594.71, 1481.62, 1451.17, 1276.27, 1188.83,
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965.24, 934.58, 830.65, 760.73. *H NMR (300 MHz, CDCl3 8): 10.25 (s, 1H, CHO), 7.79 (dd, J=7.7,
1.8 Hz, 1H, phenyl H), 7.47 (m, 1H, phenyl H), 7.09 (m, 2H, phenyl H), 5.66 (m, 1H, CH=CH,), 5.58
(m, 1H, CH=CHCHs), 3.66 (d, J= 6.0 Hz, 2H, CH,CH=CHCH;), 2.83 (s, 3H, CH3N), 1.73 (dq, J= 6.0,
1.24 Hz, 3H, CH=CHCH3). **C NMR (75 MHz, CDCl; 8): 191.48 (HC=0), 155.69 (phenyl C), 134.50
(phenyl C), 130.10 (phenyl C), 129.34 (alkene C), 127.77 (phenyl C), 126.83 (alkene C), 121.01
(phenyl C), 118.86 (phenyl C), 61.63 (NCH,CH=CHCHs), 42.41 (CH3NH), 14.14 (NCH,CH=CHCHs).

0
|

H

K. 2-[(methyl)(2-bromo-2-propen-1-yl)amino]benzaldehyde (KAW-I-055)
T/\f

A 25-mL round bottom flask was charged with 2-[(methyl)(2-bromo-2-propen-1-
yl)amino]benzenemethanol (0.2143 g, 0.9919 mmol) and methylene chloride (5 mL). TEMPO
(0.0318 g, 0.204 mmol) and iodobenzene diactetate (0.3892 g, 1.208 mmol) were added to the
flask. The reaction was stirred at room temperature overnight; and the color of the solution
changed from orange to dark orange. The solution transferred with ether (3x5 mL) and made
slightly basic with saturated sodium bicarbonate (15 mL). The solution was extracted with ether
(3x15 mL). The ether extract was washed with sodium thiosulfate (3x15 mL) and brine (3x20
mL) sequentially and dried over sodium sulfate. The solvent was removed in vacuo. The crude
product was purified using column chromatography in hexane: ethyl acetate (99:1). This yielded
the title compound as a bright yellow oil (0.1973 g, 0.9217 mmol, 73%). IR (neat, cm™): 2853.49,
2723.89, 1680.47, 1594.57, 1482.52, 1452.49, 1278.00, 1183.38, 1082.00, 898.55, 830.24,
759.80. 'H NMR (300 MHz, CDCl3 6): 10.33 (s, 1H, CHO), 7.79 (d, J= 1.8 Hz, 1H, phenyl H), 7.50

(ddd, J= 8.3, 7.2, 1.8 Hz, 1H, phenyl H), 7.12 (m, 2H, phenyl H), 5.91 (g, J= 1.7 Hz, 1H, CBr=CH,),
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5.65 (dt, J= 1.7, 0.94 Hz, 1H, CBr=CH3,), 3.99 (s, 2H, CH,CBr=CH,), 2.93 (s, 3H, CHsN). >*C NMR (75
MHz, CDCl; §): 191.33 (HC=0), 154.45 (phenyl C), 134.68 (phenyl C), 130.61 (phenyl C), 129.89

(alkene C), 127.92 (phenyl C), 121.89 (phenyl C), 119.46 (phenyl C), 118.82 (alkene C), 65.58

i
S

L. 2-[(methyl)(2-methyl-2-propen-1-yl)amino]benzaldehyde (KAW-1-059) |

(NCH,CBr=CH,), 41.86 (CHsNH).

A 50-mL round bottom flask was charged with 2-[(methyl)(2-methyl-2-propen-1-
yl)amino]benzenemethanol (0.2646 g, 1.383 mmol) and methylene chloride (8 mL). TEMPO
(0.0432 g, 0.276 mmol) and iodobenzene diactetate (0.5350 g, 1.661 mmol) were added to the
flask. The reaction was stirred at room temperature overnight; and the color of the solution
changed from light orange to red orange. The solution was combined with KAW-1-060. The
solution transferred with ether (3x5 mL) and made slightly basic with saturated sodium
bicarbonate (20 mL). The solution was extracted with ether (3x20 mL). The ether extract was
washed with sodium thiosulfate (3x20 mL) and brine (3x20 mL) sequentially and dried over
sodium sulfate. The solvent was removed in vacuo. The crude product was purified using
column chromatography in hexane: ethyl acetate (99:1). This yielded the title compound as a
bright yellow oil (0.3961 g, 2.093 mmol, 89%). IR (neat, cm™): 3072.53, 2851.41, 2702.67,
1681.42,1657.41, 1595.11, 1483.15, 1446.44, 1283.75, 1183.63, 898.85, 829.99, 758.99. 'H
NMR (300 MHz, CDCl38): 10.28 (s, 1H, CHO), 7.77 (dd, J= 7.7, 1.8 Hz, 1H, phenyl H), 7.47 (ddd,
J=8.3,7.2, 1.8 Hz, 1H, phenyl H), 7.10 (dd, J= 8.3, 0.79 Hz, 1H, phenyl H), 7.02 (m, 1H, phenyl H),

5.03 (s, 1H, CCH3=CH,), 4.96 (s,1H, CCH3=CH,), 3.67 (s, 2H, CH,CCH3=CH,), 2.84 (s, 3H, CHsN),
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1.72 (s, 3H, CCH3=CH,). **C NMR (75 MHz, CDCl; 8): 191.46 (HC=0), 155.96 (phenyl C), 141.46
(phenyl C), 134.57 (phenyl C), 129.89 (phenyl C), 127.58 (alkene C), 120.99 (phenyl C), 118.72

(phenyl C), 112.87 (alkene C), 64.64 (NCH,CCH3=CH,), 41.95 (CH3NH), 20.35 (NCH,CCH3=CH,).

o

H
M. 2-[(methyl)(2-chloro-2-propen-1-yl)amino]benzaldehyde (KAW-I-074 @ilL
[(methyl)( propen-1-yl) ] yde ( ) . ﬁ e

| o
A 25-mL round bottom flask was charged with 2-[(methyl)(2-chloro-2-propen-1-

yl)amino]benzenemethanol (0.2578 g, 1.218 mmol) and methylene chloride (7 mL). TEMPO
(0.0381 g, 0.244 mmol) and iodobenzene diactetate (0.4715 g, 1.475 mmol) were added to the
flask. The reaction was stirred at room temperature overnight; and the color of the solution
changed from orange to red-orange. The solution transferred with ether (3x5 mL) and made
slightly basic with saturated sodium bicarbonate (20 mL). The solution was extracted with ether
(3x15 mL). The ether extract was washed with sodium thiosulfate (3x20 mL) and brine (3x20
mL) sequentially and dried over sodium sulfate. The solvent was removed in vacuo. The crude
product was purified using column chromatography in hexane: ethyl acetate (99:1). This yielded
the title compound as bright yellow oil (0.2280 g, 1.088 mmol, 89%). IR (neat, cm™): 2854.95,
2709.76, 1680.95, 1595.10, 1482.66, 1452.94, 1281.24, 1184.61, 1157.66, 830.31, 759.80. 'H
NMR (300 MHz, CDCl5 8): 10.31 (s, 1H, CHO), 7.78 (dd, J= 7.7, 1.8 Hz, 1H, phenyl H), 7.50 (ddd,
J=8.3,7.2,1.8 Hz, 1H, phenyl H), 7.10 (m, 2H, phenyl H), 5.45 (q, J= 1.5 Hz, 1H, CCI=CH,), 5.40
(dt, J= 1.4, 0.78 Hz, 1H, CBr=CH,), 3.93 (s, 2H, CH,CCI=CH,), 2.93 (s, 3H, CH3N). 3C NMR (75

MHz, CDCl; ): 191.92 (HC=0), 154.58 (phenyl C), 138.45(phenyl C), 134.68(phenyl C), 130.63
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(phenyl C), 127.91 (alkene C), 121.87 (phenyl C), 119.39 (phenyl C), 114.53 (alkene C), 64.12

(NCH,CBr=CH,), 41.55 (CHsNH).

|
©jJ\H 0
Nﬁ)LOA
N. 2-[(methyl)(2-ethylpropan-oate-2-propen-1-yl)Jamino]benzaldehyde (KAW-1-067)

A 25-mL round bottom flask was charged with 2-[(methyl)(2-ethylpropanoate-2-propen-1-
yl)amino]benzenemethanol (0.1737 g, 0.6968 mmol) and methylene chloride (7 mL). TEMPO
(0.0225 g, 0.144 mmol) and iodobenzene diactetate (0.2700 g, 0.8383 mmol) were added to the
flask. The reaction was stirred at room temperature overnight; and the color of the solution
changed from orange to dark orange. The solution transferred with ether (3x5 mL). The solution
was extracted with ether (3x20 mL). The ether extract was washed with sodium thiosulfate
(3x20 mL) and brine (3x20 mL) sequentially and dried over sodium sulfate. The solvent was
removed in vacuo. The crude product was purified using column chromatography in hexane:
ethyl acetate (98:2). This yielded the title compound as a bright yellow oil (0.1524 g, 0.6163
mmol, 88%). IR (neat, cm'l): 2982.20, 2855.33, 2699.54, 1712.90, 1681.42, 1595.56, 1483.12,
1292.68, 1147.89, 1110.71, 1084.68, 760.88. "H NMR (300 MHz, CDCl3 6): 10.23 (s, 1H, CHO),
7.78 (dd, J=7.7, 1.8 Hz, 1H, phenyl H), 7.47 (ddd, J= 8.2, 7.2, 1.8 Hz, 1H, phenyl H), 7.11 (d, J=
8.2, 1H, phenyl H), 7.05 (t, J=7.2 Hz, 1H, phenyl H), 6.37 (q, J= 1.4 Hz, 1H, C(-OCH,CH3)=CH,),
5.83 (g, J= 1.4 Hz, 1H, C(-OCH,CH3)=CH,), 4.17 (q, J= 7.1 Hz, 2H, C(-OCH,CH3)=CH,), 4.05 (s, 2H,
CH,C(-OCH,CH3)=CH,), 2.88 (s, 3H, CH3N), 1.25 (t, J= 7.1 Hz, 3H, C(-OCH,CH3)=CH,). **C NMR (75
MHz, CDCl; 6): 191.92 (HC=0), 166.27 (CH,C(COOCH,CHs)=CH,), 155.28 (phenyl C), 136.31
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(phenyl C), 134.63 (phenyl C), 130.25 (phenyl C), 127.85 (alkene C), 126.36 (phenyl C), 121.46
(phenyl C), 119.08 (alkene C), 64.12 (NCH,C(COOCH,CHs)=CH,), 58.77
(NCH,C(COOCH,CH3)=CH,), 41.99 (CH3NH), 14.11 ((NCH,C(COOCH,CH3)=CH,).

o

o
NN
0. 2-[(diallyl)amino]benzaldehyde (KAW-1-003)
3
A 100-mL round bottom flask was charged with 2-[(diallyl)Jamino]benzenemethanol (0.7270

g, 3.576 mmol) and methylene chloride (18 mL). TEMPO (0.1111 g, 0.7110 mmol) and
iodobenzene diactetate (1.4037 g, 4.358 mmol) were added to the flask. The reaction was
stirred at room temperature overnight; and the color of the solution changed from orange to
brown-orange. The solution was transferred with ether (3x5 mL) and made slightly basic with
saturated sodium bicarbonate (20 mL). The solution was extracted with ether (3x20 mL). The
ether extract was washed with sodium thiosulfate (3x20 mL) and brine (3x20 mL) sequentially
and dried over sodium sulfate. The solvent was removed in vacuo. The crude product was
purified using column chromatography in hexane: ethyl acetate (99:1). This yielded the title
compound as bright yellow oil (0.3997g, 1.985 mmol, 55%). IR (neat, cm™): 3075.10, 2979.91,
2836.65, 2723.98, 1683.08, 1594.90, 1480.92, 1280.55, 920.18, 762.00. *H NMR (300 MHz,
CDCl5 6): 10.34 (s, 1H, CHO), 7.82 (dd, J= 6.5, 1.3 Hz, 1H, phenyl H), 7.47 (m, 1H, phenyl H), 7.09
(m, 2H, phenyl H), 5.85 (m, 2H, CH=CH,), 5.20 (m, 4H, CH=CH,), 3.79 (dd J=5.9, 1.1 Hz, 4H,
CH,CH=CH,). *C NMR (75 MHz, CDCl; 8): 191.64 (HC=0), 154.25 (phenyl C), 134.25 (phenyl C),

133.88 (alkene 2C), 129.46 (phenyl C), 129.28 (phenyl C), 122.11 (phenyl C), 121.25 (phenyl C),

118.13 (alkene 2C), 57.30 (NCH,CH=CH,).
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Hydroacylation reactions:

A. [Rh(dppe)]BF; (KAW-1-062):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0235 g, 0.0628
mmol) and 1,2-bis(diphenylphosphanyl)ethane, dppe, (0.0251 g, 0.0628 mmol). The flask was
evacuated and backfilled with argon three times. Dry, degassed acetone (6.3 mL, 0.01M
substrate) was added via syringe to the flask to yield a bright orange solution. Hydrogen gas
was bubbled through the solution (via needle) for 5 minutes, during this time, the solution
became pale orange. The solution was freeze-thawed degassed three times to remove the
hydrogen then backfilled with argon. The solution of Rh[dppe]BF; was then used for

hydroacylation experiments.

B. [Rh(dppm)]BFs; (KAW-11-001):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0230 g, 0.0615
mmol) and 1,2-bis(diphenylphosphanyl)methane, dppm, (0.0231 g, 0.0601 mmol). The flask was
evacuated and backfilled with argon three times. Dry, degassed acetone (6.15 mL, 0.01M
substrate) was added via syringe to the flask to yield a bright orange solution. Hydrogen gas
was bubbled through the solution (via needle) for 5 minutes, during this time, the solution
became pale orange. The solution was freeze-thawed degassed three times to remove the
hydrogen then backfilled with argon. The solution of Rh[dppm]BF; was then used for

hydroacylation experiments.
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C. [Rh(dppp)IBFs (KAW-11-006):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0206 g, 0.0551

mmol) and 1,2-bis(diphenylphosphanyl)propane, dppp, (0.0230 g, 0.0558 mmol). The flask was

evacuated and backfilled with argon three times. Dry, degassed acetone (5.51 mL, 0.01M
substrate) was added via syringe to the flask to yield a bright orange solution. Hydrogen gas
was bubbled through the solution (via needle) for 5 minutes, during this time, the solution
became pale orange. The solution was freeze-thawed degassed three times to remove the
hydrogen then backfilled with argon. The solution of Rh[dppp]BF; was then used for

hydroacylation experiments.

D. [Rh(dppb)]BF, (KAW-1I-014):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0175 g, 0.0467
mmol) and 1,2-bis(diphenylphosphanyl)butane, dppb, (0.0201g, 0.0471 mmol). The flask was
evacuated and backfilled with argon three times. Dry, degassed acetone (4.70 mL, 0.01M
substrate) was added via syringe to the flask to yield a bright orange solution. Hydrogen gas
was bubbled through the solution (via needle) for 5 minutes, during this time, the solution
became pale orange. The solution was freeze-thawed degassed three times to remove the
hydrogen then backfilled with argon. The solution of Rh[dppb]BF; was then used for

hydroacylation experiments.
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E. [Rh(DPE-Phos)]BF, (KAW-11-024):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0189 g, 0.0505
mmol) and (Oxydi-2,1-phenylene)bis(diphenylphosphine), DPE-Phos, (0.0268g, 0.0498 mmol).
The flask was evacuated and backfilled with argon three times. Dry, degassed acetone (5.00 mL,
0.01M substrate) was added via syringe to the flask to yield a bright orange solution. Hydrogen
gas was bubbled through the solution (via needle) for 5 minutes, during this time, the solution
became pale orange. The solution was freeze-thawed degassed three times to remove the
hydrogen then backfilled with argon. The solution of Rh[DPE-Phos]BF, was then used for

hydroacylation experiments.

F. [Rh(dfppe)]BF, (KAW-11-028):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0199g, 0.0532
mmol) and 1,2-Bis[bis(pentafluorophenyl)phosphino]ethane, dfppe, (0.0399g, 0.0526 mmol).
The flask was evacuated and backfilled with argon three times. Dry, degassed acetone (5.25 mL,
0.01M substrate) was added via syringe to the flask to yield a bright orange solution. Hydrogen
gas was bubbled through the solution (via needle) for 5 minutes, during this time, the solution
became pale orange. The solution was freeze-thawed degassed three times to remove the
hydrogen then backfilled with argon. The solution of Rh[dfppe]BF; was then used for

hydroacylation experiments.
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G. [Rh{(R, R)-Me-DuPhos}]BF, (KAW-11-037):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0187g, 0.0500
mmol) and (-)-1,2-Bis[(2R,5R)-2,5-dimethylphospholano]benzene, (R, R)-Me-DuPhos, (0.0153g,
0.0499 mmol). The flask was evacuated and backfilled with argon three times. Dry, degassed
acetone (5.00 mL, 0.01M substrate) was added via syringe to the flask to yield a bright orange
solution. Hydrogen gas was bubbled through the solution (via needle) for 5 minutes, during this
time, the solution became pale orange. The solution was freeze-thawed degassed three times
to remove the hydrogen then backfilled with argon. The solution of [Rh{(R, R)-Me-

DuPhos}]BFswas then used for hydroacylation experiments.

H. [Rh{P(PhOMe);}]BF, (KAW-11-037):

A 10-mL Schlenk flask was charged with pre-catalyst [Rh(NBD),]BF4 (0.0131g, 0.0350
mmol) and (-)-1,2-Bis[(2R,5R)-2,5-dimethylphospholano]benzene, P(PhOMe)s, (0.0251g, 0.0712
mmol). The flask was evacuated and backfilled with argon three times. Dry, degassed acetone
(3.50 mL, 0.01M substrate) was added via syringe to the flask to yield a bright orange solution.
Hydrogen gas was bubbled through the solution (via needle) for 5 minutes, during this time, the
solution became pale orange. The solution was freeze-thawed degassed three times to remove
the hydrogen then backfilled with argon. The solution of [Rh{P(PhOMe)s}]BF; was then used for

hydroacylation experiments.
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I. 1,2,3,4-tetrahydro-1-methyl-5H-1-benzazepin-5-one (KAW-1-064): N

/

A 10-mL Schlenk flask fitted with a condenser was charged with 2-[(2-propen-1-
yl)(methyl)amino]benzaldehyde(0.0764 g, 0.4360 mmol). The flask was evacuated and
backfilled with argon three times. Degassed acetone (4.4 mL, 0.1M substrate) was added to the
flask via syringe. The [Rh(dppe)]BF4 (2.18 mL, 0.01M in acetone, 0.0218 mmol) was added to
the flask via syringe. The solution went from golden yellow to orange stirring overnight. The
solution was concentrated over celite using in vacuo and purified by column chromatography in
hexane: ethyl acetate (99:1). This title compound as a yellow oil (0.0709 g, 0.4047 mmol, 93%).
The product turns solid once placed in refrigerator. IR (neat, cm'l): 2928.51, 2862.02, 1661.72,
1595.25, 1488.58, 1441.37, 1339.77, 1296.82, 1162.99, 947.79, 750.64. 'H NMR (300 MHz,
CDCl36): 7.75 (dd, J= 7.8, 1.8 Hz, 1H, phenyl H), 7.34 (ddd, J= 8.6, 7.1, 1.8 Hz, 1H, phenyl H), 6.88
(d, J=8.6 Hz, 1H, phenyl H), 6.82 (ddd, J=7.8, 7.1, 1.0 Hz, 1H, phenyl H), 3.24 (t, J=6.7 Hz, 2H,
C=0CH,), 3.12 (s, 3H, CH3N), 2.78 (t, J= 7.1 Hz, 2H, CH,N), 2.24 (tt, J= 7.1, 6.75 Hz, 2H,
CH,CH,CH,). **C NMR (75 MHz, CHCI3 8): 203.2 (ketone C), 154.2 (phenyl C), 132.5 (phenyl C),
129.8 (phenyl C), 127.00 (phenyl C), 116.0 (phenyl C), 113.8 (phenyl C), 57.3 (C=0CH,), 40.9

(CH»CH,CH,), 40.1 (CH,N), 31.1 (CHsN).
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J. 1,2,3,4-tetrahydro-1,3-dimethyl-5H-1-benzazepin-5-one (KAW-1-061):
/

A 10-mL Schlenk flask fitted with a condenser was charged with 2-[(methyl)(2-methyl-2-
propen-1-yl)Jamino]benzaldehyde (0.0875 g, 0.462 mmol). The flask was evacuated and
backfilled with argon three times. Degassed acetone (2.4 mL, 0.2M substrate) was added to the
flask via syringe. The [Rh(dppe)]BF4 (2.31 mL, 0.01M in acetone, 0.0231 mmol) was added to
the flask via syringe. The solution went from golden yellow to light orange stirring overnight.
The solution was concentrated over celite using in vacuo and purified by column
chromatography in hexane: ethyl acetate (98:2). This title compound as a pale yellow oil
(0.0795g, 0.420 mmol, 91%). IR (neat, cm™): 2957.56, 2870.15, 1661.73, 1595.81, 1489.29,
1442.82,1353.57, 1298.44, 1196.54, 1164.23, 1112.76, 1004.67, 750.10, 735.17. 'H NMR (300
MHz, CDCl; 6): 7.76 (dd, J=7.8, 1.8 Hz, 1H, phenyl H), 7.33 (ddd, J= 8.5, 7.0, 1.8 Hz, 1H, phenyl
H), 6.87 (d, J=8.5 Hz, 1H, phenyl H), 6.81 (ddd, J=7.8, 7.0, 1.0 Hz, 1H, phenyl H), 3.31 (dd, J=
14.2, 6.5 Hz, 1H, C=OCH,), 3.14 (s, 3H, CHsN), 2.94 (dd, J= 14.2, 6.5 Hz, 1H, C=OCH,), 2.83(dd, J=
10.5, 6.5 Hz, 1H, CH;N), 2.63 (tq, J= 14.2, 6.5 Hz, 2H, CH,CH (CHs) CH,), 2.52 (dd, J= 10.5, 6.5 Hz,
1H, CH,N), 1.14 (d, J= 6.5 Hz, 3H, (CH,CH (CHs) CH,) . 3C NMR (75 MHz, CHCl; 8): 201.9 (ketone
C), 154.4 (phenyl C), 132.4 (phenyl C), 129.8 (phenyl C), 126.5 (phenyl C), 117.7(phenyl C), 113.3
(phenyl C), 64.4 (C=0CH,), 48.62 (CH3N), 40.9 (CH,N), 38.8 (CH,CH(CHs3)CH,), 18.7

(CH,CH(CH3)CHy).
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K. 1,2,3,4-tetrahydro-1-methyl-3-ethylpropanoate-5H-1-benzazepin-5-one (KAW-I-

069):

A 10-mL Schlenk flask fitted with a condenser was charged with 2-[(methyl)(2-
ethylpropan-oate-2-propen-1-yl)Jamino]benzaldehyde (0.0629 g, 0.254 mmol). The flask was
evacuated and backfilled with argon three times. Degassed acetone (2.55 mL, 0.1M substrate)
was added to the flask via syringe. The [Rh(dppe)]BF4 (1.27 mL, 0.01M in acetone, 0.0127
mmol) was added to the flask via syringe. The solution went from golden yellow to light orange
stirring overnight. The solution was concentrated over celite using in vacuo and purified by
column chromatography in hexane: ethyl acetate (98:2). This title compound as a pale yellow
oil (0.0282g, 0.114 mmol, 45%). IR (neat, cm™): 2980.9, 2875.09, 1718.85, 1660.14, 1598.29,
1495.47, 1443.86, 1203.46, 1173.25, 1161.84, 1113.31, 1073.80, 1015.64, 758.14. 'H NMR (300
MHz, CDCl; 6): 7.78 (dd, J=7.8, 1.7 Hz, 1H, phenyl H), 7.35 (ddd, J= 8.5, 7.0, 1.7 Hz, 1H, phenyl
H), 6.86 (m, 2H, phenyl H), 4.24 (g, /= 7.2, 1.0 Hz, 2H, OCH,CHs), 4.23 (g, /= 7.2, 1.0 Hz, 2H,
OCH,CHs), 3.80 (d, J= 13.5 Hz, 1H, C=0CH,), 3.32 (m, 1H, CH;N), 3.20 (m, 2H, CH;N, C=0CH,),
2.92 (m, 1H, CH,CH(-OCH,CH3)CH,), 1.31 (t, J= 7.2 Hz, 3H, OCH,CHs). *C NMR (75 MHz, CHCl; §):
200.2 (ketone C), 173.0 (ester C), 154.3 (phenyl C), 132.8 (phenyl C), 129.9 (phenyl C), 126.2
(phenyl C), 118.3(phenyl C), 113.6 (phenyl C), 61.2 (OCH,CHs), 59.0 (CH,N), 48.28 (CH3N), 42.8

(C=0CHj,), 40.3 (CH,CH(-OCH,CHs)CH;), 14.2 (OCH,CHjs).
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L. 1,2,3,4-tetrahydro-1-benzazepin-5-one (KAW-1-052):

A 10-mL Schlenk flask fitted with a condenser was charged with 2-
[diallylamino]benzaldehyde(0.0788 g, 0.391 mmol). The flask was evacuated and backfilled with
argon three times. Degassed acetone (3.91 mL, 0.1M substrate) was added to the flask via
syringe. The [Rh(dppe)]BF4 (1.96mL, 0.01M in acetone, 0.0196 mmol) was added to the flask via
syringe. The solution went from light orange to a darker orange stirring for 3 hours. After 3
hours 100uL of deionzed water sparged with nitrogen was added and was allowed to stir
overnight. The solution was concentrated over celite using in vacuo and purified by column
chromatography in hexane: ethyl acetate (90:10). This title compound as a pale yellow oil
(0.0554 g, 0.344 mmol, 88%). The product turns solid once placed in refrigerator. IR (neat, cm’
1): 3385.12, 3369.03, 2925.78, 1648.44, 1597.20, 1479.89, 1333.92, 1295.07, 1231.56, 1154.57,
754.71. *H NMR (300 MHz, CDCl3 8): 7.72 (ddd, J= 7.9, 1.7, 0.3 Hz, 1H, phenyl H), 7.24 (ddd, J=
8.1,7.0,1.7 Hz, 1H, phenyl H), 6.82 (ddd, J=7.9, 7.0, 1.0 Hz, 1H, phenyl H), 6.76 (ddd, J= 8.1, 1.0,
0.3 Hz, 1H, phenyl H), 4.6 (s, 1H, NH), 3.26 (t, J= 7.1 Hz, 2H, CH,N), 2.82 (t, J= 7.1 Hz, 2H,
C=0CH,), 2.18 (q, J= 7.1 Hz, 2H, CH,CH,CH,). *C NMR (75 MHz, CHCl5 8): 202.8 (ketone C), 153.6
(phenyl C), 132.4 (phenyl C), 129.5 (phenyl C), 125.4 (phenyl C), 118.7 (phenyl C), 117.6(phenyl

C), 47.96 (C=0CH,), 41.21 (CH,N), 31.42 (CH,CH,CH,).
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